Continuous Miner Ventilation Dust Mitigation Research at UK

KY Professional Engineers in Mining Seminar August 26, 2016 Dr. Chad Wedding

MSHA New Dust Rule

 Revised full shift samplingImmediate corrective actions Improved record keeping Increased medical surveillance 			
Continuous personal dust monitor (CPDM)			
 High exposure occupations- more sampling. 			
 Overall dust standard: 2.0 - 1.5 mg/m³ Miners workplace: 1.0 - 0.5 mg/m³ 			

Source: http://www.msha.gov/endblacklung/docs/summaryEffectiveDates.pdf

College of Engineering Mining Engineering

UNIVERSITY OF KENTUCKY

UK Dust Mitigation Research

Flooded Bed Scrubber for Longwall Shearer

Novel Vortecone Scrubber Technology Transfer

Passive Wing Regulator

Passive Wing Regulator

- Full scale test gallery for testing dust and methane controls
- 1:1 continuous miner
 - Body sprays
 - Rotating drum
- Combination of engineering controls
 - Scrubber
 - Wing Regulator
 - Sprays

Longwall Dust Control Challenges

Longwall

Air Quantity, 67 kcfm High Production Airflow along the face Multiple, scattered

sources of dust

Air Quantity, 7 kcfm Relatively lower production Blind heading Localized source

Room and Pillar

Flooded Bed Scrubber for Longwall Shearer

- Along with dilution and water sprays, common dust capture technology for continuous miner units
- Cleaning efficiencies between 60% and 90% (NIOSH 1997)(USBM, 1990)
- Potential for longwall shearer

Conceptual Layout

- Scrubber incorporated into Joy 7LS Shearer
- Two new compartments added
- Length increase from 55' to 62'

Airflow Arrangement

Scrubbed Air Dust Laden Air from

Leading Drum

Research Approach

Original shearer model provided by JOY

Velocity Contours

Velocity Contours

Dust Capture wrt Time & Flow through Scrubber

500 fpm Face Velocity

UNIVERSITY

KEſ

Dust Capture wrt Time & Flow through Scrubber

580 fpm Face Velocity

K E.

Dust Capture

College of Engineering Mining Engineering UNIVERSITY OF KENTUCKY

Projected Captures

Scrubber Flow Rates												
Average flow at the face		6,350 cfm	7,625 cfm	8,900 cfm	10,200 cfm	11,400 cfm	12,700 cfm					
	500 fpm	85.9	87.1	85.5	82.8	84.8	90.0					
	580 fpm	75.6	86.8	87.6	84.4	88.4	90.8					

Reduced Scale Modeling

- 1:20 scaled model of the setup
- Replicates problem set up in CFD
- Used the same velocities encountered in the mine, all other surfaces stationary.
- CO2 [tracer gas] mimics the dust particles under the suction of shop vacuum [scrubber].
- Flow volumes calculated and concentrations measured using gas monitors.

Reduced Scale Results

No Scrubber w/CO2				Ocustum			
Air Velocity		CO2 Content	Air Velocity (fpm)		CO2 Content	Capture	
m/s	fpm	(%)	m/s	fpm	(%)	Linciency	
2.06	405	0.60	2.06	406	0.08	94.55%	
2.32	456	0.52	2.34	460	0.11	87.23%	
2.54	500	0.52	2.57	505	0.11	87.23%	
2.82	555	0.47	2.79	550	0.14	78.57%	
3.07	605	0.41	3.05	600	0.14	75.00%	

Reduced scale results agree with CFD model results

Full Scale Prototype

- Concept verification to be completed at the NIOSH campus in Pittsburgh
- Full-scale testing with functional scrubber prototype
- Mock up miner constructed from 80/20 AI extrusion and PVC plastic

Full Scale Prototype

- 50HP centrifugal fan with VFD for powering scrubber
- Allen Bradley PLC for control and instrumentation

Preliminary Experiments

NIOSH Dust Gallery in Pittsburgh

Preliminary Testing

Preliminary Results

Vortecone Scrubber for Mining

- UK/Toyota Joint development
- Applicable for respirable size fraction
- High cleaning efficiency
- Minimal maintenance
- Scalable in match air requirements
 - From 200 cfm lab models to 60,000 cfm at Toyota

Novel Vortecone Scrubber

Four main components:

- 1. Cone shape inlet
- 2. Mixing chamber
- 3. Vortex chamber
- 4. Discharge

Works on the principle of vortex interaction of particle-laden airflow with water

CFD Modeling (cont.)

Computational mesh employed in the computational domain Velocity vectors on three parallel Planes

Representative Velocity Contours

Particle Tracking

Cleaning Efficiency by Count

% Cleaning Eff. Vs Inlet Velocity

College of Engineering Mining Engineering

university of KENTUCKY

Cleaning Efficiency by Mass

% Mass Escaped Vs Inlet Velocity 3.0E-03 0.00300 2.5E-03 0.00250 2.0E-03 0.00200 **Seg №** 1.5E-03 0.00150 1.0E-03 0.00100 5.0E-04 0.00050 0.0E+00 0.00000 5 6 7 8 10 12 14 16 18 20 **Inlet Velocity**

College of Engineering Mining Engineering UNIVERSITY OF KENTUCKY

Results / Conclusions

- Solid concept for flooded bed scrubber incorporated into a longwall shearer
- Capture efficiency of dust generated from the headgate drum exceeds 70-80%
 - CFD, reduced scale model, full scale prototype
- Vortecone CFD modeling suggests high cleaning efficiency

Acknowledgement

On behalf of those who have worked on the material presented, I would like to express our gratitude to those who have made our research possible.

- Alpha Foundation
- Alliance Coal
- NIOSH
- JOY Global

