METHODS FOR NONDESTRUCTIVE EVALUATION OF UNDERGROUND MINE SEALS

KRAY LUXBACHER, PE, PHD ASSOCIATE PROFESSOR , DEPARTMENT OF MINING AND MINERALS ENGINEERING ASSOCIATE DIRECTOR, VIRGINIA CENTER FOR COAL AND ENERGY RESEARCH

14

ASSESSMENT OF TECHNOLOGY FOR NON-DESTRUCTIVE TESTING OF IN-SITU UNDERGROUND MINE SEALS

This publication was developed under Contract No. 200-2012-52497, awarded by the National Institute for Occupational Safety and Health (NIOSH) to Cardno MMA, with VT serving as subcontractor. The findings and conclusions in this report are those of the authors and do not reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

OVERVIEW

- Background and Motivation
- Technology identified for assessment
 - Ultrasonic Sensing
 - Ground Penetrating Radar
 - Tracer Gas Methods*
- Experimental Methods
- Findings
- Recommendations

BACKGROUND AND MOTIVATION

- After several major mine accidents in the winter/spring of 2006 the MINER Act was promulgated and signed into law on June 15, 2006
- Among others, there were specific changes to law regarding mine seals:
 - Seals rated at 50 psi must be monitored
 - Or seals rated to 120 psi installed under strictly engineered plans

Getty Images, 2006

- Maintenance and Examination of Seals is limited to:
 - Visual Inspection (outby only) or obvious communication with the sealed area
 - Inspection of seals as they are routinely breached
 - Obvious structural defects that require replacement

ULTRASONIC SENSING

- P-waves reflecting off boundaries in the sample create a resonance frequency that can be measured using FFT analysis
- Developed specifically as concrete strength and flaw detection NDT method

GROUND PENETRATING RADAR (GPR)

- A geophysical method, similar to ultrasonic, but utilizing high frequency radio waves.
- Widely applied in civil engineering applications, particularly for location of voids and tanks in ground.

TRACER GASES

- Utilized a novel gas has been proven for mine ventilation
- Perfluoromethylcyclohexane (PMCH)
- Tracer used primarily for atmospheric and building ventilation studies
- 250 less abundant in background atmosphere than SF6
- Non-naturally occurring, volatile, inert, nontoxic, heavy molecular weight (350 g/mol)
- Liquid at standard pressure and temperature, but low vaporization pressure (14 kPa)

TRACER GASES | PASSIVE RELEASE SOURCES

SMALL SCALE EXPERIMENTS

LARGE SCALE EXPERIMENTS

- I2 large samples prepared for analysis:
 - Varied the mix, included small voids, large voids, trash Styrofoam, balls, high density anomalies
 - Samples stored and analyzed in underground limestone mine.

GROUND PENETRATING RADAR EXPERIMENTS

 5 frequencies (200 to 1600 MHz) and 3 units (2-MALA Geoscience; 1-IDS Detector Duo) were evaluated

GPR SAMPLES POURED AND TESTED

Specimen Identification	Product Manufacturer	Sample Product	Compressive Strength	Feature I	Feature 2	Feature 3	Feature 4	Feature 5
Unit A	Minova**	Tekseal®	842 psi	Thermocouples	Fractures	Constant UCS	Consistent material	Improper mix ratio
Unit B	Minova	Tekseal®	858 psi	Thermocouples	Regular	Varied UCS	Inconsistent material	Improper mix ratio
Unit C	Minova	Tekseal®	1302 psi	Thermocouples	Fractures	Constant UCS	Desiccated material	Correct mix ratio
Unit D	Minova	Tekseal®	4212 psi	Thermocouples	Regular	Constant UCS	Consistent material	Improper mix ratio
Unit E	Minova	Tekseal®	942 / 792 psi	Thermocouples	Voids on rear	Varied UCS	Desiccated Material	Improper mix ratio
Unit F	Minova	Tekseal®	1439 psi	Thermocouples	Small voids	Constant UCS	Consistent Material	Improper mix ratio
Unit G	Minova	Tekseal®	703 psi	Thermocouples	Regular	Constant UCS	Consistent material	Improper mix ratio
Unit H	Strata	Stratacrete® Medium Strength	N/A	Control	Regular	Constant UCS	Consistent Material	Correct Mix Ratio
Unit I	Strata	Stratacrete® Medium Strength	N/A	N/A	Small Voids/ Styrofoam /	Constant UCS	Consistent Material	Correct Mix Ratio
Unit J	Strata	Stratacrete® High Strength	N/A	Steel Reinforcement	trash & debris	Constant UCS	Consistent Material	Correct Mix Ratio
Unit K	Strata	Stratacrete® High Strength		Steel Reinforcement	Regular	Constant UCS	Consistent Material	Correct Mix Ratio
Unit L	Minova	Tekseal LD®	731 psi	Control	Small Voids/ Styrofoam / trash & debris	Constant UCS	Consistent Material	Correct Mix Ratio
Unit M	Minova	Tekseal LD®	742 psi	N/A	High density anomaly (limestone)	Constant UCS	Consistent Material	Correct Mix Ratio
Unit N	Minova	Tekseal LD®	704 psi	N/A	Small and Large voids	Constant UCS	Consistent Material	Correct Mix Ratio
Number I	Minova	Tekseal®	975 psi	Control	Regular	Constant UCS	Consistent Material	Correct Mix Ratio
Number 2	Minova	Tekseal LD®	726 psi	Control	Regular	Constant UCS	Consistent Material	Correct Mix Ratio

GPR TESTING

GPR RESULTS

GPR TESTING | WHAT ARE THE DEPTH LIMITATIONS?

GPR TESTING | WHAT ARE THE DEPTH LIMITATIONS?

GPR DEPTH RESULTS

LABORATORY SCALE TRACER GAS EXPERIMENTS

LABORATORY SCALE TRACER GAS EXPERIMENTS

FIELD SCALE TRACER GAS EXPERIMENTS

FIELD SCALE TRACER GAS EXPERIMENTS

LARGE SCALE TRACER GAS EXPERIMENTS

FULL SCALE TRACER GAS EXPERIMENTS

FULL SCALE TRACER GAS EXPERIMENTS

FULL SCALE TRACER GAS EXPERIMENTS

	*Note: Samples reported in ppb	Time Aft PF	er Sealing PRS
	Sampling		
	Location	23 Days	59 Days
	A 1.5	6.75	5.87
	A 3	5.42	5.77
	B 1.5	7.44	6.79
	В 3	3.10	4.51
4995.893	D 1.5	2.93	13.99
	D 3	3.34	21.42
	E I.5	27.84	6.55
-3865.826	E 3	8.07	26.95
	F I.5	2.89	3.59
- 2735.76	F 3		10.26
		N/A	1.31
	Air Samples	N/A	1.46
- 1605.693		N/A	
475.6264			

*NI- to Company

PRELIMINARY PERMEABILITY STUDIES

Avizo[®] permeability simulation

 3-D simulation consisting of a constructed 3-D model from CT-scan of seal material sample, with viscosity values for PMCH, and permeability values compared to other geologic structures

CONCLUSIONS

- GPR allowed for identification of surface/near surface features only
- Ultrasonic methods worked well in the lab environment, but not in the mine environment due to noise
 - The major challenges with wave propagation methods are:
 - Access to only one side of the structure
 - Penetration of 12 feet
 - Resolving small anomalies and structural defects
 - Permissibility
- Tracer Gas use is promising but limited to indicating degree of communication
 - It will not allow for detection of isolated structural defects
 - Placement of passive sources as well as long term behavior must be examined

RECOMMENDATIONS

- More detailed testing of GPR which could include further evaluation of maximum feasible depth of penetration.
- Exploration of background noise cancelling and unique sources might improve viability of ultrasonics, but full penetration of the wave into the seal remains a problem.
- Tracer gases were promising, particularly for gaining an understanding of communication between the sealed area and the active area in a global sense. Placement and reliability of sources must be examined, as well as expected background levels. Isolated structural anomalies cannot be detected with this method.

ACKNOWLEDGMENTS

	Research Collaborators	Sponsor		
Cardno MM&A	Cardno MMA (Project Lead)	NIOSH		
Shaping the Future	Cary Harwood	Karl Zipf (COTR)		
	John Feddock	Industrial Collaborators		
	University of Kentucky	Strata Worldwide		
	William Weitzel	Minova		
UNIVERSITY OF KENTUCKY	Braden Lusk	Nally & Gibson		
	Virginia Tech	Lhoist North America		
	Kyle Brashear	Dyno Nobel		
Invent the Future	Erik Westman			
	Harold McNair Scott Jeter			

A SHAMELESS PLUG

15th North American Mine Ventilation Symposium

June 20th to June 24th, 2015

The Inn at Virginia Tech and Skelton Conference Center Blacksburg, Virginia

