HIGHWALL STABILITY DUE TO GROUND VIBRATIONS FROM BLASTING

Dr. Kyle A. Perry Dr. Kot F. Unrug Kevin Harris Michael Raffaldi

PURPOSE

Objective: Study the effect of blast vibrations on the stability of highwalls and web and barrier pillars

Methods

- Numerical Modeling
- Field Testing
- Laser Scanning
- Vibrations Monitoring

SASW Testing

Numerical Modeling

- FLAC3D Web and Barrier Pillars
 - Stress Distribution
 - Pillar Stability
- 3DEC Highwall Modeling
 - Laser Scanning
 - Displacement/Velocity

Field Data Collection

SASW Testing

Dynamic Material Properties

- Shear Modulus
- Damping Ratio

Modulus/Damping Reduction Curves

- Dynamic Model Calibration
- Iterative Numerical Process

SASW Testing

Numerical Modeling

Sub-Objective 1: Evaluate the influence of highwall mining progression on web/barrier pillar stability using FLAC3D

Methodology

- Simplification 2D Section
- Validation Mark-Bieniawski
- 5 Case Studies

Material Properties

Coal Material Model

Strain Softening Mohr-Coulomb

Roof/Floor Interface

• Bi-linear Mohr-Coulomb

Property	Value
Elastic Modulus (GPa)	3
Poisson Ratio	0.25
Cohesion (MPa)	
Initial	1.81
Final	0.41
Friction Angle (deg)	28
Plastic Strain Range	0.015

Material Properties

Rock Material Model

• Ubiquitous Joint Model with Softening

	Rock Matrix Properties							Bedding Plane Properties		
		Elastic	Poisson	Friction	Cohesion	Tensile	Dilation	Friction	Cohesion	Tensile
	UCS	Modulus	Ratio	Angle		Strength		Angle		Strength
	MPa	GPa		Deg	MPa	MPa	Deg	deg	MPa	MPa
SS	100	40	0.25	40	13.52	5.8	12	30	6.76	4.64
SH	30	10	0.25	20	7.3	1.74	19	7	0.5	0.17

Matrix Softening									
		Cohesion		Tensile Strength			Dilation		
	Maximum	Residual	Range*	Maximum	Residual	Range	Maximum	Residual	Range*
	MPa	MPa		MPa	MPa		Deg	Deg	
SS	13.52	0	0.005	5.8	0	0.001	12	0	0.005
SH	7.3	0	0.005	1.74	0	0.001	19	0	0.005
Bedding Plane Softening									
	Cohesion			Tensile Strength			Dilation		
	Maximum	Residual	Range*	Maximum	Residual	Range	Maximum	Residual	Range*
	MPa	MPa		MPa	MPa		Deg	Deg	
SS	6.76	0.68	0.005	4.64	0	0.001	12	0	0.005
SH	0.5	0.05	1.005	0.17	0	0.001	19	0	0.005

Model Validation

Model Validation

▲ Model (SS)

• Model(SH)

Model Validation

Material Properties

- Peak Strength
- Calibration Reasonable

Web/Barrier Pillars

• "Infinite Length" Assumption

2D Cross Section

• Plane Strain Validation

Case Study Results

Case	Height (m)	Web (W/H)	Barrier (W/H)	Cover (m)
C1	1.219	0.75	3	45.7
C2	1.219	1	4	60.9
С3	1.219	1.25	4	70.1
C4	1.219	1.5	5	91.4
C5	1.219	1.75	6.5	118.9

Mining Progression Results

Important Findings

Tributary Area Loading

- Common Assumption
- Arching Effect Geology Dependent
- Importance of Barrier Pillar Design

Mining Progression

- De-stressing near Barriers
- Asymmetric Loading

Probability of Pillar Failure/Highwall Collapse Dynamic Impact on Web/Barrier Pillars

Numerical Modeling

Sub-Objective 2: Correlate active highwall sites with 3DEC for validation and additional testing

Methodology

- Routine trips collect scan data
- Digitize geometry for mesh generation within 3DEC

Primary Mine Site

Pine Branch Mine

- Perry County, KY
- Mountaintop/Contour
- Hazard 7 Hazard 10 seams
- 200' 300' Highwall
- Massive Sandstone

Important Mine Data

- Corehole Data
- Mapping

Primary Mine Site

VIBRATION AND SCAN DATA

Laser Scanning

- Pre/Post Blast Capture
- Mesh Generation for 3DEC
- Geologic Data
 - -2 Primary Joint Sets
 - 85 Degree Dip
 - 110, 185 Direction

Seismograph Deployment

- Highwall Peak and Bottom
- Single Event Vibration Data

SUMMARY

Project Direction

FLAC3D Modeling

- Probability of Pillar Failure/Highwall Collapse
- Dynamic Impact on Web/Barrier Pillars

3DEC Modeling

- Solidify Static Model
- Quantify/Correlate Damage and Vibrations
- Sensitivity Studies
 - Ratio of PPV
 - Geology
 - Highwall Geometry

QUESTIONS?

