United States Department of Labor

Mine Safety and Health

Administration

Dennis Cotton
Assistant District Manager
District 7
Coal Mine Safety and Health

KY MSHA Districts

Kentucky Total Number of Mines

- Underground
- Surface
- Facilities
- Total Operations
- Producing Operations
- Non-producing Operations

D6 D7 D10 Total

44	43	11	98
73	74	10	157
43	56	15	114
160	173	36	369

91	105	26	222

Total Number of Miners in Kentucky - 9,291

Coal 2014 Fatal Accidents

- 11 Underground Mines - 5 Surface Mines
- Classifications:
- Powered Haulage - 5
- Machinery - 5
- Fall of Face/Rib/Pillar/ or Highwall - 3
- Electrical - 1
- Fall of Roof or Back - 1
- Other (Drowning) - 1
- Total - 16

Coal Fatalities 2014-9 States

Coal 2014 Fatalities by State:

- West Virginia 5
- Virginia 2
- Kentucky 2
- Wyoming 2
- Indiana 1
- Illinois 1
- Alabama 1
- Utah 1
- Montana 1
- Total

16

MNM Fatal Accidents - 2014

- Underground Mines - 6
- Surface Mines - 18
- Facilities - 5
- Classifications
- Powered Haulage - 8
- Slip or Fall or Person - 7
- Falling/Sliding/Rolling Materials - 5
- Machinery - 3
- Fall of Rib - 2
- Hoisting - 1
- Electrical - 1
- Explosion of Gas - 1
- Other - 1
- Total - 29

MNM Fatal Accidents by State -- 2014

- Texas - 5
- Nevada-2
- Missouri - 2
- Virginia - 2
- Pennsylvania - 2
- Utah-2
- South Carolina - 2
- New York - 2
- Kansas - 1
- Ohio - 1
- Montana - 1
- Illinois - 1
- Kentucky - 1
- Idaho-1
- Indiana - 1
- Iowa - 1
- Florida-1
- Louisiana - 1
- Total -29

MNM Fatal Accidents By Commodity -- 2014

- Sand \& Gravel - 8
- Cement-4
- Limestone - 3
- Gypsum-2
- Lime - 2
- Sandstone - 1
- Iron Ore - 1
- Gold-1
- Salt - 1
- Common Clay - 1
- Alumina - 1
- Fire Clay - 1
- Granite - 1
- Silica-1
- Silver - 1
- Total - 29

MNM Fatalities Nationwide

CY 2015

METAL/NONMETAL DAILY FATALITY REPORT - September 8, 2015

FATALITIES CHARGEABLE TO THE METAL/NONMETAL MINING INDUSTRY	2011		2012		2013		2014		2015	
	UG	S								
ELECTRICAL	0	0	0	0	0	0	0	1	0	0
EXP VESSELS UNDER PRESSURE	0	0	0	0	0	0	0	0	0	0
EXP \& BREAKING AGENTS	1	0	0	0	0	1	0	0	0	0
FALL/SLIDE MATERIAL	0	1	0	2	1	1	0	3	0	3
FALL OF FACE/RIB/HIGHWALL	0	0	1	1	0	1	2	0	0	0
FALL OF ROOF OR BACK	2	0	0	0	0	0	0	0	1	0
FIRE	0	0	0	0	0	0	0	0	0	0
HANDLING MATERIAL	0	0	0	0	0	0	0	0	0	0
HAND TOOLS	0	0	0	0	0	0	0	0	0	0
NONPOWERED HAULAGE	0	0	0	0	0	0	0	0	0	0
POWERED HAULAGE	0	2	1	4	2	2	0	4	1	2
HOISTING	0	0	0	0	0	0	1	0	1	0
IGNITION/EXPLOSION OF GAS/DUST	0	0	0	0	0	0	0	1	0	0
INUNDATION	0	0	0	0	0	0	0	0	0	0
MACHINERY	0	1	0	1	0	3	1	2	0	4
SLIP/FALL OF PERSON	0	1	1	1	0	0	1	3	0	2
STEP/KNEEL ON OBJECT	0	0	0	0	0	0	0	0	0	0
STRIKING OR BUMPING	0	0	0	0	0	0	0	0	0	0
OTHER	0	0	0	0	0	0	0	1	0	1
YEAR TO DATE TOTALS	3	5	3	9	3	8	5	15	3	12
COMBINED YEAR TO DATE TOTALS	8		12		11		20		15	
END OF YEAR TOTAL	16		16		22		29			

Coal Fatalities Nationwide CY 2015

COAL DAILY FATALITY REPORT - September 8, 2015

FATALITIES CHARGEABLE TO THE COAL MINING INDUSTRY	2011		2012		2013		2014		2015	
	UG	s								
ELECTRICAL	0	1	1	0	0	0	1	0	0	0
EXP VESSELS UNDER PRESSURE	0	0	1	0	0	1	0	0	0	0
EXP \& BREAKING AGENTS	0	0	0	0	0	0	0	0	0	0
FALUSLIDE MATERIAL	0	0	0	0	0	0	0	0	1	0
FALL OF FACEIRIB/HIGHWALL	2	0	1	0	1	0	2	0	2	0
FALL OF ROOF OR BACK	1	0	1	0	2	0	0	0	1	0
FIRE	0	0	0	0	0	0	0	0	0	0
HANDLING MATERIAL	0	0	1	0	0	0	0	0	0	0
HAND TOOLS	0	0	0	0	0	0	0	0	0	0
NONPOWERED HAULAGE	0	0	0	0	0	0	0	0	0	0
POWERED HAULAGE	2	1	1	1	4	0	1	1	1	1
HOISTING	0	0	0	0	1	0	0	0	0	0
IGNITION/EXPLOSION OF GAS/DUST	0	0	0	0	0	0	0	0	0	0
INUNDATION	0	0	0	0	0	0	0	0	0	0
MACHINERY	2	2	1	1	1	3	3	1	1	1
SLIP/FALL OF PERSON	0	1	1	2	0	0	0	0	0	0
STEPIKNEEL ON OBJECT	0	0	0	0	0	0	0	0	0	0
STRIKING OR BUMPING	0	0	0	0	0	0	0	0	0	0
OTHER	0	0	0	1	0	1	0	1	0	0
YEAR TO DATE TOTALS	7	5	8	5	9	5	7	3	6	2
COMBINED YEAR TO DATE TOTALS	$\frac{12}{20}$		13		14		10		8	
END OF YEAR TOTAL										

Coal Fatalities Nationwide CY 2015

 Location of Accidents

 Location of Accidents}

8 Fatal Accidents

- 6 Underground
- 2 Surface

Coal Fatalities Nationwide CY 2015
 Accident Classification

8 Fatal Accidents

- 2 Machinery
- 2 Fall of Face/Rib/Highwall
- 2 Powered Haulage
- 1 Fall of Roof
- 1 Fall/Slide of Material

Coal Fatalities Nationwide

CY 2015

By State

8 Fatal Accidents

- 3 - PA
- 2 - WV
- 1 - VA
- 1 - IL
- 1-KY

Kentucky Accidents 2006-2015

Kentucky Accidents (Degree of Injury 2-5)

	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$
D6	329	307	293	259	213	238	173	128	124	73
D7	397	359	295	330	312	255	212	131	131	85
D10	211	156	179	204	160	155	132	173	191	78
Totals	937	822	767	793	685	648	517	432	446	236

Kentucky Fatalities										
	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$
D6	6	2	1	3	0	2	2	0	0	1
D7	9	0	5	3	4	4	2	2	1	0
D10	1	0	2	1	3	2	1	0	1	0
Totals	16	2	8	7	7	8	5	2	2	1

2015 Coal Fatality \#1 - January 28, 2015

Machinery Accident Hooversville, PA

LCT Engergy, LP
Brubaker Mine

A 43 year-old continuous mining machine operator with 10 years of mining experience was killed when he was pinned between the conveyor boom of a remote controlled continuous mining machine and a coal rib. The victim was operating the continuous mining machine from a remote position in the entry and was preparing for the next mining cycle when the accident occurred.

2015 Coal Fatality \#2 - February 20, 2015

Fall of Roof Accident Heilwood, PA Rosebud Mining Co. Heilwood Mine

A 29 year-old roof bolter helper with 3 years and 48 weeks of mining experience was killed when a piece of rock approximately 3 feet wide, $11 \frac{1}{2}$ feet long, and 3 to 16 inches thick fell and pinned him against the top of the drill canopy of a roof bolting machine. The roof bolting machine was positioned to install the next row of permanent supports when the accident occurred.

2015 Coal Fatality \#3 - March 8, 2015

Fall of Face/Roof Cameron, WV McElroy Coal Co. McElroy Mine

A 45 year old assistant longwall coordinator with twelve years of experience was killed while working on a longwall section. The victim was shoveling loose material between the longwall face and the pan line when a large piece of rock, 12 feet long by 5 feet wide by 1 foot thick, fell from the face and struck him.

2015 Coal Fatality \#4 - March 16, 2015

Fall of Rib/Roof McClure, VA
Paramont Coal Co. Virginia, LLC Deep Mine 41

A 34 year-old section foreman with 10 years of mining experience was killed when a coal/rock rib approximately 90 inches long, 45 inches high, and 15 to 18 inches thick fell and pinned him against the side of a shuttle car.

2015 Coal Fatality \#5 - May 28, 2015

Machinery Accident Phelps, Kentucky Apex Energy, LLC No. 11 Allen Br. Job

A 45-year-old surface foreman with 27 years of experience was killed when he was crushed between the frames of a road grader and a tractor that was transporting a base power module for a highwall miner. The foreman was in the process of connecting a chain between the two machines when the road grader rolled back and crushed him.

2015 Coal Fatality \#6 - May 31, 2015

Powered Haulage Coulterville, IL Peabody Midwest Mining, LLC

 Gateway Mine

A 59-year-old mine examiner with 32 years of mining experience was found unconscious, unresponsive, and lying in a travel way. The victim had been driving a diesel mantrip to travel to a set of seals to examine them. The victim was located along the east coal rib, and the front right corner of the mantrip was in contact with the west rib just inby the location of the victim.

2015 Coal Fatality \#7 - March 17, 2015

Powered Haulage Scarbro, WV Republic Energy, Inc. Rebublic Energy Mine

A 52-year-old contract truck driver was killed while driving a fuel truck on a mine haulage road. The tandem axle truck was found on its top near the bottom of a long descending grade which included a sharp curve to the right. The fuel truck was fully loaded with approximately 3,500 gallons of diesel fuel. After interviews, investigators could not determine if the victim was wearing a seatbelt at the time of the accident.

2015 Coal Fatality \#8 - June 27, 2015

Falling Material Accident Dilliner, PA Dana Mining Co. of Pennsylvania, LLC West Mine

A 55-year-old scoop operator with 21 years of mining experience was killed when he was struck by a set of metal airlock doors. The victim was closing the airlock doors when the doors dislodged and fell, pinning him to the ground.

76,000 \$45 billion New cases
 denthes sies
 1868
 sperit in federeal compansetion
 being diagnosed incluting in young miners

MSHA's
 Final Respirable Dust Rules Phase II
 Major Sections Affected

- Part 70 (Underground coal mines)
- Part 71 (Surface coal mines/facilities)
- Part 90 (Miners with lung disease)
- Section 75.350 (Belt Air Course Ventilation)

Phase II

- Changes effective February 1, 2016

Phase III

- Changes effective August 1, 2016

Part 70/71/90 New Terms

- Excessive Concentration Value (ECV)
- Refer to CPDM column of ECV tables when using a CPDM for sampling
- Other Designated Occupation (ODO)
- Other occupation on an MMU that is designated for sampling

Part 70/71/90 - Standards

- Base standard for underground and surface mines - $1.5 \mathrm{mg} / \mathrm{m}^{3}$ effective August 1, 2016
- Underground mine - Intake air
- $0.5 \mathrm{mg} / \mathrm{m}^{3}$ effective August 1, 2016
- Part 90 miners
- $0.5 \mathrm{mg} / \mathrm{m}^{3}$ effective August 1, 2016

Part 70/71/90 Sampling General

- CPDM use required after February 1, 2016
- DO sampling
- Other Designated Occupations (ODO) sampling (former DAs on the MMU)
- Part 90 miners
- CMDPSU used for DA and DWP sampling unless operator notifies District Manager of use of CPDM after February 1, 2016 at least 90 days prior to intended use

Part 70/71/90 Sampling CPDM Certification

- Persons certified by MSHA to conduct sampling with a CPDM
- Persons certified by MSHA to maintain and calibrate CPDM sampling units

Main System Components

CPDM Training Schedule

National Mine Health \& Safety Academy

District 2

District 3

District 4

District 5

District 6

Diserict 7

District 9

District 10

District 11

District 12

of each month

Schedule available upur request
zid whedinesday of Each month

$$
\begin{aligned}
& z^{\text {nd }} \text { Whednegday of } \\
& \text { each month }
\end{aligned}
$$

```
1 st and 3nd Tuesday or
each mmonth
```


Jume 11

July 8
August 12
$2^{\text {nd }}$ Wedinesday of Each month thereafter

$$
\begin{aligned}
& 3^{\text {nd }} \text { Wilonday of each } \\
& \text { momth }
\end{aligned}
$$

Please set in touch for

 scheduling informetion.$$
\begin{aligned}
& 1^{s t} \text { and } 3^{\text {ni }} \text { Wedraeselay } \\
& \text { of each imonth }
\end{aligned}
$$

$2^{\text {nd }}$ wedinesday of

 each moonth$2^{\text {nd }}$ Wedinesday of Each month

Contace sturlent registration at (304) $256-3252$

Daniel Marnsell
$724-925-5150$ eect 122
meansell cilanieligutat.enor
Milliam Spens
$304-225-6825$
Bpenswilliarmadol. zov
Foy Eaker
$304-877-3900$ ext 156
beker, nownimul-eroy
Tony Arena
276-679-0230
arena_tomyradiol enow
Stewie Justice
$1606-432-0943$
ilustice stevie Exdal-erov

Reandy KCline
6066-546-5123
klinerandyradiol-gov

Devid Stepp
812-882-7617ect 137
stapapudavidiguglou. Eov
Villiann (Ec) Vetrer
$303-231-5536$
wetter-williamgudoll. EDO
Hubert (Gene) Wright
$270-821-4120$
wrieht hubertiguld enow
Rus $=5$ el weelcly
$205-290-7300$ ext 287
weekly nusselliadol.enor
Ronald Barber
304-256-3528
barber momaldowalat Eov

Part 70/71/90 CPDM Sampling Certification

- Re-certified every 3 years
- MSHA may revoke certification
- Certified in sampling may collect samples
- Certified in Maintenance can work on sampling units
- Maintenance certification not cover sampling duties

Part 70

Quarterly Sampling - MMU (effective February 1, 2016)

- Conducted with CPDM unless notified
- Sample DO consecutive shifts until 15 valid samples collected
- Additional 15 shift groups may be required
- District Manager discretion
- Required if found not following approved ventilation plan

Part 70

Quarterly Sampling - MMU

- Sample ODOs (includes former DAs on MMU) consecutive shifts until 15 valid samples collected
- ODO sampling not start until DO sampling complete
- Different ODO types sampled over separate time period during quarter
- Example: RB sampled over 15 shifts after DO 15 shift sampling complete
- Example: SCs sampled over 15 shifts after the DO 15 shift sampling and the RB 15 shift sampling is complete

Part 70

Quarterly Sampling - MMU

- DOs, ODOs to be sampled specified in rule
- Other ODOs may be designated by the DM
- New reduced standard due to quartz will be effective 7 calendar days after the date of notification
- Samples exceeding applicable standard by $0.1 \mathrm{mg} / \mathrm{m}^{3}$ or more will be used regardless of production

Part 70

Quarterly Sampling - DAs

(effective February 1, 2016)

- Sample each DA 5 consecutive shifts each quarter
- No consecutive days cycle
- Quartz present - resulting in reduced standard
- New standard effective 7 calendar days after date of notification

Part 71 DWP Sampling

- Continues as specified effective August 1, 2014 except that DWP sampling May be performed using the CPDM with notification to the District manager

Part 90 Sampling Compliance

- Requirements for Part 90 samples effective August 1, 2014 continue except that All Part 90 samples must be collected using a CPDM effective February 1, 2016

Part 70/71/90
 Transmission of CPDM Sample Data

- CPDM
- Mine official validate, certify and transmit electronically within 24 hours after end of sampling shift
- Sample data file
- Sample status conditions file
- Operator maintain data files at least 12 months
- Not tamper with CPDM or alter any data files

Part 70/71

Report and Posting

- CPDM
- End-of-shift sample results - operator post within 12 hours after end of sampling shift
- Information remain posted until receipt of MSHA provided samples report
- MSHA sample results report posted at least 31 days

Part $75-75.350$ Belt Air Course Ventilation

- Belt air used as intake air on MMU
- Standard reduced to $0.5 \mathrm{mg} / \mathrm{m}^{3}$ effective August 1, 2016
- If a reduced standard is applicable on the working section that is less than the $0.5 \mathrm{mg} / \mathrm{m}^{3}$ standard, then the lowest applicable standard applies to the belt entry

PROXIMITY DETECTION SYSTEMS FOR CONTINUOUS MINING MACHINES IN UNDERGROUND COAL MINES

RULE \& COMPLIANCE

The rule became effective on March 16, 2015
http://www.msha.gov/regs/fedreg/fina//2015/proximity-detection/

Accident Data

- To assess the costs and benefits of the final rule, MSHA conducted a review of fatal and nonfatal pinning, crushing, and striking accidents, which occurred in underground coal mines from 1984 through 2013.
- Of the 75 preventable fatalities resulting from pinning, crushing, and striking accidents, 34 of those were associated with continuous mining machines (CMMs).
- During this same time period, MSHA estimated that the use of a proximity detection system could have prevented 238 nonfatal injuries associated with CMMs.
- Since 2010, $\underline{8}$ miners working in close proximity to CMMs died from pinning, crushing, or striking accidents.
- MSHA projects that the rule will prevent approximately 49 injuries and 9 deaths over the next 10 years.

Proximity Detection System Requirements §75.1732

- Operators must install a proximity detection system on certain CMMs.
(a) Machines covered. Operators must equip continuous mining machines, except full-face continuous mining machines, with proximity detection systems by the following dates. For proximity detection systems with miner-wearable components, the mine operator must provide a miner-wearable component to be worn by each miner on the working section by the following dates.

Machines Covered §75.1732 (a)

(1) Continuous mining machines manufactured after March 16, 2015 must meet the requirements in $\$ 75.1732$ no later than November 16, 2015. These machines must meet these requirements when placed in service with a proximity detection system.
(2) Continuous mining machines manufactured and equipped with a proximity detection system on or before March 16, 2015 must meet the requirements in § 75.1732 no later than September 16, 2016.
(3) Continuous mining machines manufactured and not equipped with a proximity detection system on or before March 16, 2015 must meet the requirements in §75.1732 no later than March 16, 2018. These machines must meet these requirements when placed in service with a proximity detection system.

MSHA interprets the March 16, 2018 date to also apply to continuous mining machines with an existing proximity detection system that requires the installation of a new proximity detection system to meet the requirements of the rule. For these machines, MSHA anticipates that the new proximity detection system will be installed during the first planned rebuild.
See Program Policy Letter P15-V-01.

Proximity Detection System Requirements

 §75.1732 (b)(b) Requirements for a proximity detection system. A proximity detection system includes machine-mounted components and miner-wearable components. The system must:
(1) Cause a machine, which is tramming from place-to-place or repositioning, to stop before contacting a miner except for a miner who is in the on-board operator's compartment;
(2) Provide an audible and visual warning signal on the miner-wearable component and a visual warning signal on the machine that alert miners before the system causes a machine to stop. These warning signals must be distinguishable from other signals;
(3) Provide a visual signal on the machine that indicates the machine-mounted components are functioning properly;

MSHA Approved Proximity Detection Systems

- Two MSHA-approved systems provide an audible and visual warning signal on the miner-wearable component and a visual warning signal on the machine that alert miners before the system causes a machine to stop, as required by the final rule.
- Strata Mining Products HazardAvert® System
- Matrix Design Group IntelliZone ${ }^{\text {m }}$ /J oy Global SmartZone® Proximity System

Generation 2

- As of J anuary 2015, approximately 425 out of 863 CMMs were equipped with a proximity detection system.

Proximity Detection System Requirements

§75.1732 (b)

(4) Prevent movement of the machine if any machine-mounted component of the system is not functioning properly. However a system with any machinemounted component that is not functioning properly may allow machine movement if it provides an audible or visual warning signal, distinguishable from other signals, during movement. Such movement is permitted only for purposes of relocating the machine from an unsafe location for repair;
(5) Be installed to prevent interference that adversely affects performance of any electrical system; and
(6) Be installed and maintained in proper operating condition by a person trained in the installation and maintenance of the system.

Education and Training

Resources

- To access this resource, go to http://www.msha.gov/training/and click the link for The "new" Part 50 Training Program beneath the "Training Program and Courses" heading.

Mine Safety and Health Administration

New Part 50 Training Program

New Part 50 Training Program > Page 1 of 5

New Part 50 Training Program

Welcome to the online training course for the New Part 50 Training Program. The program is designed to clarify reporting requirements for accidents, injuries, and illnesses in the mining industry. This program will enhance MSHA's ability to evaluate and develop mine safety and health standards and programs which benefit the industry.

Why is it important for mine operators to report accidents, injuries, and illnesses?
Accidents, injuries, and illnesses are key indicators of the effectiveness of the operator's health and safety program.

Note: The material in this training course is for informational purposes only and is not intended to be an all-inclusive source for 30 CFR Part 50.

Click Next to Continue

Part 50 Training Program

- The goal of the new Part 50 Training Program is....
- for mine operators and contractors to properly report accidents, injuries, illnesses, and employment data
- more accurately identify problem areas
- generate the best corrective actions possible to prevent recurrence and
- enhance both MSHA and mine operators ability to develop programs to benefit the health and safety of miners

Accidents, injuries, and illnesses are key indicators of the effectiveness of the operator's health and safety program.

Trainer's Page http://wwwv.msha,gov/training

UNITED STATES
 DEPARTMENT OF LABOR

Advanced Search

MINE SAFETY AND HEALTH ADMINISTRATION MSHA Training Center

Get training updates and alerts

Training is an essential part of MSHA's mission to keep miners safe and healthy. Our goal is to help the mining industry develop highquality training programs, and to strengthen and modernize training through collaboration with industry stakeholders. Federal law requires that all miners receive basic and annual refresher training, and that all mine operators maintain an effective training plan. MSHA provides materials, guidance, and hands-on assistance to help miners and operators meet their training obligations and more. We have gathered many of our materials on this page for your convenience, and will add to them over time.

Questions? Comments? Materials to share? Please contact us at mshatraining@dol.gov for assistance or to suggest improvernents to the training page.

Part 48 or Part 46 ? Learn what it means here.

Spotlight

Materials for $\mathbf{2}^{\text {nd }}$ quarter 2015 conference call

Materials for $1^{\text {st }}$ quarter 2015 conference call

Materials for quarterly conference call

Recording of 3rd quarter conference call regarding recent fatalities and training resources

Materials for 3rd quarter conference call

Slideshow with information on training materials, and fatal accidents and near-misses from Coal and Metal/Nonmetal. Slideshow with information on training materials, and fatal accidents and near-misses from Coal and Metal/Nonmetal.

Slideshow with presentations on new training materials, and fatal accidents and near-misses from Coal and Metal/Nonmetal

Listen to a one-hour MSHA call with trainers, held Nov. 13 . Slideshows on Coal fatalities, MNM fatalities, and EPD presentation on task training and adult learning.

Develop a Training Plan

The following resources may be useful in developing training plans for Part 46 and Part 48 mines. If this is your first time creating a training plan, we highly recommend getting in touch with Educational Field and Small Mine Services for assistance. You can also review the most current regulations set forth in 30 CFR Part 46 and Part 48. The official regulations outline the required components of an approved training plan, the types of training programs that must be included in a plan, and appropriate record-keeping procedures.

Review the most current regulations: Part 46 | Part 48

MSHA Training Plan Advisor

Provides guidance in developing federally required training plans for Part 46 and Part 48 mines, and allows plans to be submitted online.

MSHA Program Policy Manual

Pattern of Violations Single Source Page

UNITED STATES
DEPARTMENT OF LABOR

Pattern of Violations

The Mine Act places the responsibility for ensuring the health and safety of miners on mine operators．Congress enacted the pattern of violations（POV）provision to provide MSHA with an additional enforcement tool when other tools had proven ineffective．Congress intended MSHA to use the POV provision to restore safe and healthful conditions at mines with a pattern of significant and substantial（S\＆S）violations．The legislative history states that Congress believed the existence of a pattern would signal to both the mine operator and the Secretary that＂there is a need to restore the mine to effective safe and healthful conditions and that the mere abatement of violations as they are cited is insufficient．＂

A mine operator that has a pattern of S\＆S violations at a mine will receive written notice from MSHA．For each subsequent S\＆S violation，MSHA will issue an order withdrawing miners from the affected area until the cited condition has been corrected．MSHA will terminate an operator＇s POV notice when 1）an inspection of the entire mine is completed and no S\＆S violations are found or 2）no withdrawal order is issued by MSHA in accordance with Section 104（e）（1）of the Mine Act within 90 days of the issuance of the pattern notice．

Mine operators can determine whether they may be subject to a POV notice by using MSHA＇s Pattern of Violations Monitoring Tool．It is the responsibility of mine operators to track their violation and injury histories to determine whether they need to take action to avoid triggering a POV notice．Operators who are at risk of receiving a POV notice are encouraged to implement a corrective action program to reduce s\＆s violations．More information about corrective action programs can be found in MSHA＇s Pattern of Violations Procedures Summary．

Tools for You

－Monthly Monitoring Tool for Pattern of Violations
Enter an MSHA Mine ID ：\square（ 7 Digits－No Dash）

If you do not know the Mine ID，please use the Data Retrieval System．

－S\＆S Rate Calculator

The S\＆S Rate Calculator is a tool for mine operators that implement a Corrective Action Program（CAP）with goals for reductions in a mine＇s rate of Significant and Substantial（S\＆S）violations to determine if a mine is meeting its goals． The data for this application is refreshed daily．

QUESTIONS???

