LONGWALL OPERATIONS IN ILLINOIS AND SUBSIDENCE MITIGATION

29th Annual Kentucky Professional Engineers In Mining Seminar

Dan Barkley Illinois DNR Office of Mines and Minerals

Illinois Mining History

1915: Undercutting 14-foot Herrin Coal in southern Illinois. 1st recorded mining in 1810 (Underground near Murphysboro)

 Mining on an industrial scale began in the 1890's

 Surface mining became significant in the 1920's

Historical Underground Mining

 1.1 million acres have been undermined in Illinois by:
Room and pillar mining

Longwall mining

Trend of Surface to Underground Through Time in Illinois

Brief Illinois Longwall History

Longwall "Hand Mining"

First practiced in <u>1857</u> in LaSalle County

1885 Illinois Coal Report used term "Long-wall"

Waste rock packed into mined voids which limited, but did not prevent subsidence

1857-1951- over 100 mines in 15 counties

Packed rock limited but did not prevent subsidence

Modern Mechanized Longwall Use in Illinois

Illinois mechanized Longwall STATS

- <u>48,000 acres</u> have been longwalled since mechanized longwall began in the 1970's
- 14 individual longwall mines in 7 counties
- 290 + individual longwall panels extracted
- 4 longwall mines currently active with 6 longwall units (2 mines run 2 longwall faces)
- (Recently reduced by 1 due to spontaneous combustion problems (Hillsboro))

Surge in Longwall Production

LONGWALL MINING

Advances in Longwall Mining Over Time (80's to present) Panel widths increase from 600 feet to over 1400 feet Panel Lengths increase from 1 mile to 5 to 6 miles

Panel advance rates per day increase from 35 feet to 0ver 100 feet despite wider widths.

Pros

 Faster subsidence creates more uniform subsidence

 Less strain results in less damage to surface structures

Cons

- To Achieve greater advance Longwall equipment is oversized for the seam
- Roof and floor taken creates tremendous increase in percent reject (+ or 50 percent)
- Refuse Disposal <u>space</u> has become the greatest obstacle

SUBSIDENCE IMPACTS

Illinois Longwall Experience

- Cropland
- Perennial streams
- Homes and buildings
- Public highways
- Railroads
- Major Pipelines
- Methane gas plant
- Capped slurry impoundment

Farmland subsidence issue

 Subsidence creates drainage problems that cause standing water

 Standing water created by subsidence kills crops

 Proper drainage must be eliminated to restore farming capabilities

SUBSIDENCE CONTROL PLAN Land

 Existing and projected contours required to define potential drainage problems (This requirement is unique to Illinois)

- Drainage interruptions must be corrected
- Addition of drainage tile may be needed to supplement surface drainage

Temporary crop damage compensation \$\$ is required until repair is complete (Not a SMCRA or state regulation...we work it into each individual longwall permit)

Post Subsidence Contour Map 2 Foot Contour Interval

Isopleth lines for subsidence trough

Projected Ponding

Arrows show path of mitigation

Cut and fill work

Waterway Construction

Initial poor mitigation effort

Improved mitigation effort

Same gate road

Placement of subsurface drainage tile

Replacing Drainage Tile

Broad waterway with subsurface tile inlet

Flat Topography=drainage problems from chain pillars between subsidence troughs

Natural Drainage Flow Direction

Restoration was intentionally delayed to allow multiple panels to be mined and do a more comprehensive corrective plan.

LW face location

< Z

LW face location

< Z

Drainage mitigation 90 percent complete

Final LW face location @ closure

August 2010

August 2010

Supplemental drainage tile installation on remaining problematic areas.

Regraded drainage ditch

Google carth

BEFORE

AFTER

SUBSIDENCE CONTROL PLAN Streams

- Pre and Post Stream Profiles along larger streams typically required to define extent of mitigation
- Stream loss <u>does not</u> occur due to geologic setting. Unlike Appalachia, Illinois must address ponding and out of bank flooding
- Gate cuts and dredging downstream of the last panel to relieve ponding is often necessary
- Stream bank berms are sometimes necessary with one way flap gate culverts to control out of bank flooding
- CORPS 404 permitting (if necessary) occurs at the time of mitigation - not in the up-front permitting process.
Tension cracks adjacent and through a stream

Tension cracks through stream

POST SUBSIDENCE STREAM FLOODING MIDDLE FORK SALINE RIVER

Stream Bank Berms to reproduce pre subsidence elevations

Inlet crop field Side

Outlet stream Side

State Route IL 34 Subsided by Longwall Mining

Two Longwall panels perpendicular to rail post subsidenceand restoration

Longwall Panel 1

Chain Pillar

Subsidence Trough

Preparation for Subsidence

Holes cut in foundation for beams

"I" Beams for Floating

Home floated above foundation

Hydraulic Jacks for leveling

Utility precautions during subsidence

Home reset on new foundation after completion of subsidence movements

Home Relocation away from subsidence

Major High Pressure Petroleum and Gas Transmission Lines

Panel 2 Prepared for subsidence

Panel 1 Subsided & restored

Strain Monitoring During Subsidence

So What is the problem with LONGWALL MINING ??

It is intrusive & stressful for surface owners
It does not always go smoothly
<u>Mis</u>information spreads easily and quickly
Correcting and clarifying misinformation can be difficult

QUESTIONS??

ATCH

FOR

SUBSIDENCE

MPH

20

