Ore Sorting Technologies and Applications in the Coal

Rick Honaker Mining Engineering University of Kentucky

Kentucky Professional Engineers In Mining Seminar Clarion Hotel

Friday, September 6, 2019

K Cleaning Coal at the Speed of Light

- Hand sorting was historically a common practice for ores and coal.
- First radiometric sorter in 1946.
- Photometric sorter developed in 1952 was the basis of the first commercial sorters in uranium.
- Around 35 ore sorters worldwide in 1990.
- Estimated 300 plus/minus sorters in 2009.

*Mineral Separation Technologies, Inc.

Typical Sorting Process

□ Process involves the following sequential steps:

- Particle Presentation
- Particle Examination
- Data Analysis
- Particle Separation

* Tomra Sorting Solutions

Sorting

- Achieves a separation using a sensor, computer and air jets.
- Sensors are:
 - Optical
 - X-Ray
 - Electromagnetic
 - Infrared
 - Lazer
- Multiple sensors can be used.
- 450 air nozzles on a 2 meter wide unit.
- Particle sizes from 100 x 10 mm
- Particle surface can be moist.

Sorting Quartz Pebbles (100 x 20 mm)

* Tomra Sorting Solutions

Cre Sorting Video

$$Q = W \times Dp \times V \times \beta$$
$$M = \rho \times Q$$

- M Q W D_p V β
- = mass flow rate
 = volumetric flow
 = machine width
 = particle diameter
 = belt velocity
 = packing (<π/6)

K Typical Sorting Capacity & Operating Cost

*Tomra Sorting Solutions (February 2013 report)

Cre Sorting Applications

	INDUSTRIAL MINERALS	BASE & Fe METALS	FUEL/ ENERGY	PRECIOUS METALS	DIAMONDS & GEMS	METAL SLAG
COMMODITY	 Calcite Quarts Feldspar Magnesite Talcum Dolomite Salt 	 Copper Zinc Nickel Tungsten Iron Manganese Chromite 	• Coal • Uranium	• Gold • Platinum	 Diamonds Tanzanite Colored gemstones 	• Stainless steel • Copper • Chrome
SENSOR TECHNOLOGY	COLOR XRT NIR XRF	XRT COLOR EM NIR	XRT RM	XRT COLOR XRF NIR	COLOR XRT XRF NIR	XRT XRF EM
	Calcite	Copper	Coal	Gold	Diamonds	Ferro Silica Slag

* Tomra Sorting Solutions, 2014

- X-rays are transmitted the materials at varying degrees according to atomic density.
- Lambert's Law:

$$I_{det} = I_o e^{-\mu(\lambda)\rho d}$$

 ρ = particle density d = particle size $\mu(\lambda)$ = mass adsorption coefficient

Mass adsorption co-efficient is specific to the elements within the solid mass.

Marcel Separations

- The transmission of a single energy wave is strongly influenced by particle size.
- To provide separations over a range of particle sizes:
 - a dual energy x-ray can be applied.
 - Combination of x-ray and a lazer for size detection.
- Subjecting a composite particle having a range of sizes to a high and low energy x-ray results in transmission curves.

Particle Size-by-Density Samples

Dual Energy XRT Separations

X-Ray Image of U.S. Bituminous Coal

Mail Energy XRT Sorting

- Representative samples of the material needed by sorted are subjected to XRT analysis based on the calibration curve.
- The image generated is divided into pixels and the pixels colored according to the location above or below the calibration curve.
- Selection criteria is established based on the % of pixels colored in blue or red.

Sorting Calibration Curve High Density Zone **Calibration Curve** Low Density Zone

*H. Strydom, 2010

Application: High Ash Content Anthracite

60 x 20 mm Anthracite

- Primary goal was to avoid wetbased process due to a highly fractured and friable coal and limited water supply.
- Very difficult washability characteristics.
- Tomra Sorting Solutions test facility in Wedel, Germany
- Tests conducted at a throughput capacity of 70 tph
- Three SG cutpoint test settings evaluated.

Feed Washability

Cumulative Ash %

Partition Curves

Rougher, Setting 2 100 100 90 90 80 80 **Partition Number Partition Number** 70 70 60 60 50 50 40 40 30 30 -----20 X 60 mm 20 20 10 10 0 0 1.8 1.9 2.3 2.4 2.5 1.7 2.1 2.2 2 1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2 Mean Density Mean Density

Cleaner, Setting 2

Single State Performance Results

Feed Ash = 68.01%

Density Cutpoint Setting	Size Fraction	Product Yield %	Product Ash %	Organic Efficiency %	Product Bypass %	Reject Bypass %	Ер	Sp. Gr. Cutpoint
Setting 1	30 x 60 mm	13.10	13.81	97.04	0	0	0.065	1.91
	20 x 30 mm	13.45	17.10	61.14	4.23	1.41	0.055	1.87
	20 x 60 mm	13.72	16.53	65.33	3.62	1.17	0.06	1.88
Setting 2	30 x 60 mm	18.19	16.99	90.96	0	0	0.07	1.97
	20 x 30 mm	20.02	22.45	71.51	3.05	3.29	0.06	1.94
	20 x 60 mm	20.12	21.65	80.48	2.72	2.87	0.06	1.94
Setting 3	30 x 60 mm	24.55	24.98	90.93	6.17	2.53	0.08	2.25
	20 x 30 mm	28.75	30.1	73.72	3.48	7.47	0.07	2.14
	20 x 60 mm	28.73	29.36	73.66	3.68	6.71	0.12	2.17

Rougher stage ejected the low density particles due to the low weight percent in the lower specific gravity fractions.

Feed Ash = 68.01%

Density Cutpoint Setting	Size Fraction	Product Yield %	Product Ash %	Organic Efficiency %	Product Bypass %	Reject Bypass %	Ер	Sp. Gr. Cutpoint
Setting 1	30 x 60 mm	100	13.81	100	0	0	0.02	2.09
	20 x 30 mm	92.69	12.38	99.67	1.10	14.92	0.105	2.24
	20 x 60 mm	94.19	12.69	99.15	0.93	15.32	0.105	2.25
Setting 2	30 x 60 mm	100	16.99	100	0	0	0.02	2.09
	20 x 30 mm	88.95	15.46	99.94	0.96	11.39	0.08	2.27
	20 x 60 mm	90.65	15.61	99.62	0.85	11.67	0.105	2.25
Setting 3	30 x 60 mm	90.05	21.97	98.95	0	17.59	0.125	2.23
	20 x 30 mm	81.98	20.24	98.77	1.73	13.26	0.075	2.29
	20 x 60 mm	84.01	20.52	98.86	1.44	14.15	0.085	2.23

Cleaner stage ejected the higher density particles from the rougher stage product.

60 x 20 mm Rougher-Cleaner

Dorformance Parameter	Setting	Setting	Setting
renormance rarameter	No. 1	No. 2	No. 3
Feed Ash (%)	71.35	69.86	70.41
Product Ash (%)	12.69	15.61	20.52
Cleaner Tailings Ash (%)	81.74	84.00	82.65
Rougher Tailings Ash (%)	79.87	81.78	86.46
Mass Yield (%)	12.93	18.00	24.34
Recovery (%)	39.39	50.42	65.39
Cutpoint	1.88	1.94	2.11
Ep	0.06	0.06	0.11

Cleaner stage ejected the higher density particles from the rougher stage product.

Application: Upgrading Utility Coal Feedstock

- In some cases, ROM coal is directly shipped to utilities and possibility blended to achieve an expectable feedstock.
- Variability due to mining conditions typically results in more or less rock in the ROM coal.
- Sorter units provide a high capacity, low expense option to achieve a more consistent quality which positively impacts:
 - Pulverizer & boiler downtime
 - Boiler efficiency
 - Emissions
 - Waste handling costs, etc.

W Utility Feedstock Upgrading

□ 500 tph ROM coal

- ROM material =40% ash; 9,400 Btu/lb
- Coal Value = \$10/ton
- □ \$5,000/hr value
- □ 6000 hrs/yr operation
- □ \$30 million annual revenue

Parameter	Value
Base Price	\$50 / ton
Heat Content Specification	12,500 Btu/lb
Ash Content Specification	12.5%
Heat Adjustment	\$0.40 per 100 Btu/lb above or below specification
Ash Adjustment	\$1.00 per 1.0% ash above or below specification
Sales Related Costs	\$2.50

Revenue Enhancement

Revenue Increase to \$9500/hr (vs. \$5,000/hr) using Sorting only.
 \$26 million annual revenue improvement

Source: Dr. Aaron Noble, Virginia Tech (assumed \$0.50/ton CAPEX & OPEX)

Application: Mine-to-Plant Transportation Reduction

- ROM material contains a significant quantity of liberated rock.
- Operator can reject this material at the mine site to reduce haulage costs.
- Haulage costs were assumed to be fixed at \$0.30 per ton-mile.
- Primary output parameter was the net savings between a sorting and nosorting case.
- □ Source: Aaron Noble, VT

- 1.6 SG and 1-inch screen provided the superior performance.
- Break even point occurs in less than 5 mile haulage distance.

K Conclusions

- Efficient separations can be achieved using ore sorting technologies on particles as fine as 6 mm (1/4-inch).
- Fast processing speeds and advancement in sensor technologies have enhanced selectivity and increased throughput capacities.
- Operating costs mainly controlled by the volume of material in the feed that needs to be ejected.
 Typically in the range of \$0.50 to \$1.00 per ton.

*MST Unit at the Rare Earth Processing Plant

K Conclusions

- Applications include the removal of low grade, valueless rock prior to haulage and direct fuel upgrading for utilities.
- Dual energy XRT sorting provided an excellent separation performance when treating anthracite coal with poor cleanability characteristics.
- Probable error values obtained in our study are similar to those previously reported in publications.

*Mineral Separation Technologies, Inc.

