Research in Recovering Rare Earths from Coal and Coal Byproducts

Dr. Joshua Werner

Assistant Professor Mining Engineering Department PhD. Met. Eng., B.S. Mech. Eng., Six Sigma Black Belt, P.E. Research Team: Drs. Rick Honaker, Wencai Zhang and Jack Groppo, VT, Many Others

This material is based upon work supported by the U.S. Department of Energy under Award Number(s) DE-FE0027035.

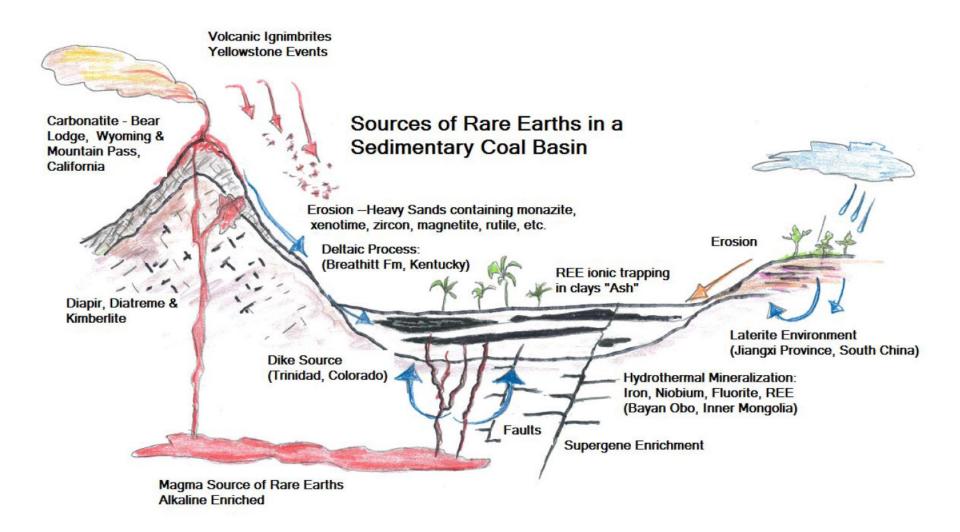
Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

What Are Rare Earth Elements?

Why Are We Researching Rare Earth Elements in Coal?

see blue.

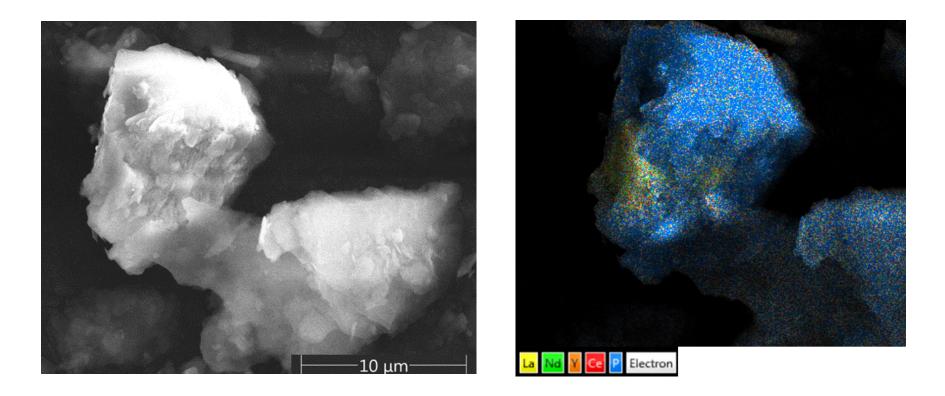

Period	Group 1																	18
1	H	2			1000	metals	h metal		Halo	alloids xgenes le gase:	5		13	14	15	16	17	He and
2	Li	Be			1966303	ition ele metals			Lant	thanide nides			5 B	C	N	0	F	Ne Ne
3	Na	Mg	4	4	5	6	7	8	9	10	-11	12	Al	SI	P	S S	17 Cl	Ar Ar
4	K K	2 Ca	21 50	Tî Kiran	23 V 23	Cr Gr	23 Mn	Pe Fe	Co Go	Ni	Cu	Zn	31 Ga	Ge	LJ As	34 50	35 Br	36 Kr
5	Rb m.e	38 St.	39 Y M.H	20 (Z)	41 Nb	40 Mo 1534	43 Tc	Ru	45 Rh	Pd	er Ag	40 Cd	45 In 1948	50 50	Sb Gb	Te Te	53 1 .069	S4 Xe
5	55 C5	55 Ba	57 La	P Hf	Ta	74 W	Re m.j	26 OS 180	77]/ 101	Pt	29 Au tut	Hg	61 TI 2044	82 Pb	aa Bi	Po	as At	AS Ro
7	B7 Fr orm	Ra	Ac	Bf ann	Db	Sg	Bh con	Hs	Mt	110 Ds	Bq	no Uub	Uut	Uuq	tis Uup	Uuh ou	Uus	Uuc
			6	58 Ce 1401	59 Pr	60 Nd	61 Pm 045	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy 1635	67 Ho	68 Er 103	69 Tm	70 Yb	71 Lu 123	
			7	Th	Pa	92 U	Np	PU	Am Det	Cm Car	8k	on Cf	Se Es	Em	Md	NO	Lr	

	•			□ +}•	⊧ ≛≣) > [
VIBRATION	AUDIO AMPLIFICATION	GPS	COLOUR DISPLAY	RECHARGEABLE BATTERIES	MINIATURISATION & IMPROVED PERFORMANCE
-£	0		()		P
NFC	HARD DRIVES	CAMERA LENS	SPINDLE MOTORS	CINEMA PROJECTION	MAGNETO-OPTIC RECORDING TECHNOLOGIES
				(A	
GPS	SP	ACE BASED SATE & COMMUNICAT SYSTEMS		SIGNAL	FIBRE OPTIC CABLES AMPLIFY SIGNAL & ENHANCE SPEED
VISORS &		ANTI-MISSILE			UNDERWATER MINE
PROTECTION		DEFENCE	JE 8		DETECTIONS
GPS	MI	SSILE GUIDANCE SYSTEMS		UNICATION	ELECTRONIC
0		U)	٢	□ +	0
ELECTRIC HYBRID CA		DRO ERGY	WATER TREATMENT	BATTERIES	COMPACT FLUORESCENT LAMPS
CATALYTIC	SO		WIND		
CONVERTER	S ENE	RGY	TURBINES	R A POST-HYDROCARB	TECHNOLOGIES*
				Ţ	2
MRI		X-RAY	LASERS	NEUTRO RADIOTHER	

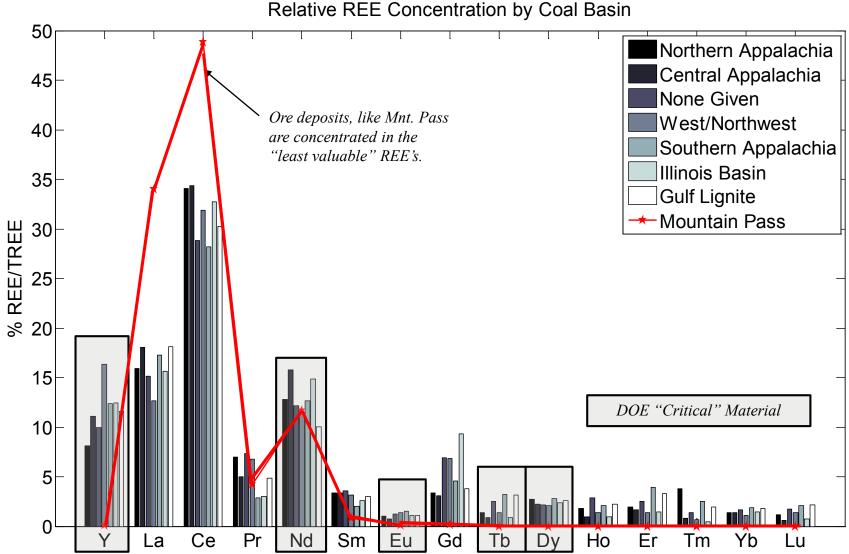
	Sc	Ceramics, lasers, and high performance alloys.
	La	Hybrid Engines, Metal Alloys
ents	Ce	Auto Catalyst, Petroleum Refining, Metal Alloys
Light Rare Earth Elements	Pr	Magnets, Magnesium Alloy for Jet Engines; Carbon Arc Lights
are Eart	Nd	Auto Catalyst, Petroleum Refining, Hard Drives In Laptops, Headphones, Hybrid Engines
Light R	Sm	Sm-Co Magnets (high temp), Cancer Treatment, Radioactive Dating
	Eu	Red Color For Television and Computer Screens
	Gd	Magnetic Resonance Imaging, X-rays, Color TV tubes
	Y	Red Color, Fluorescent Lamps, Ceramics, Metal Alloy Agent
ents	Tb	Phosphors, Permanent Magnets
Heavy Rare Earth Elements	Dy	Permanent Mags, Hybrid Engines (100 gms per EV), Lazers
e Ear	Ho	Glass Coloring, Lasers
r Rard	Er	Phosphors
Ieavy	Tm	Medical X-ray Units
Ŧ	Yb	Lasers, Steel Alloys
	Lu	Catalysts In Petroleum Refining

Ref: R.C. Bryan et al., 2015. Tetra Tech Report Submitted to U.S. DOE, January, Document No: 114-910178X-100-REP-R001-00.

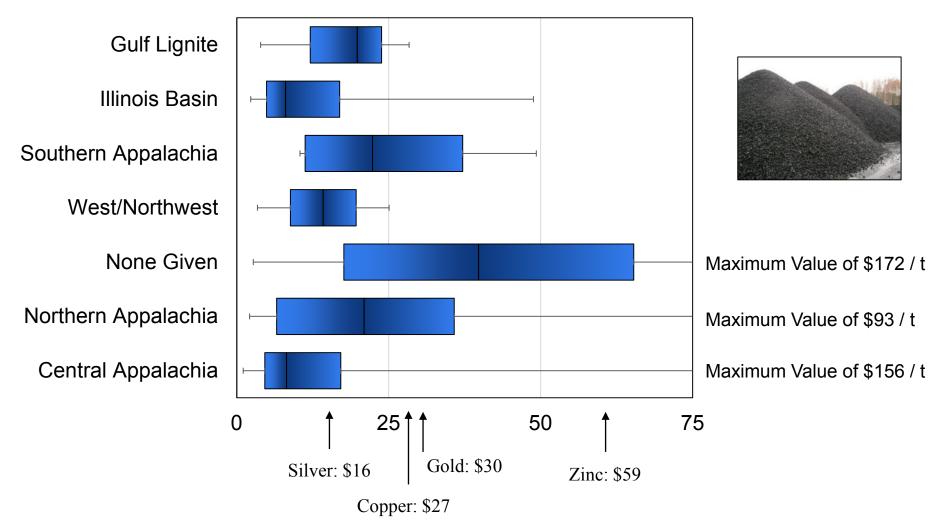
REE Forms in Coal


- Mineral association
 - monazite (Ce,La,Pr,Nd,Th,Y)PO
 - xenotime YPO₄
 - bastnaesite (Ce, La)CO₃F
 - Other
- Ion substitution in clay
- Organic association

Element Mapping Energy Dispersive Spectroscopy



■ RE mineral particles have a top size of around 10 microns and a bottom size of around 150 nm.


REEs Distribution in Coal

NETL EDX Database

Contained Value of REEs in 1 Tonne of Material

Contained Value (\$/tonne of feed)

Project Scope

<u>Deliverables</u>

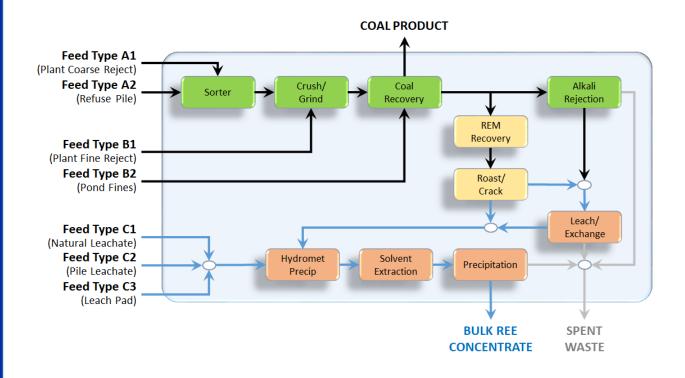
- 1/4 TPH Feed
- Coal or Coal Byproducts
- Economically Produce Concentrates

Current State

- Anticipate 98+%
 Concentrate
- 12 Months into 30 Months
- On Budget
- Environmentally
 Acceptable
- 6M 30 months

Time Line

				201				2018					2019								202	
Task	Task Description	Start	End	Q1		Q2	Q3		Q4		Q5		Q6		Q7		Q8		Q9		Q1(
		Date	Date			FM	A M .	JJ	AS	S 0	NI	DJ	F	MA	A M	J J	JA	S (N C	DJ	F	М
Phase	e 2 Budget Period 2 (Phase 2 Award Thro	-		Comm	iissio	ning)									1 1		1		1			
1	Project Management & Planning	10/1/17	3/30/20																			
2	Site Host Agreements																					
3	Detailed Systems Engineering			_																		
4	Environmental Controls Assessment																					
5	Site Rehabilitation																					
6	Bidding & Procurement																					
1	Fabrication & Construction																					
8	Installation & Assembly				ļ																	
9	Systems Safety Analysis & Training																					
10	Startup & Shakedown			 																		
Phase	e 2 Budget Period 3 (System Testing Thre	ougn Proj	ect Comp	letion)	1 1	11					_	-	-	_		_	-	-	-			
1	Project Management & Planning							_							_		_		_		-	_
2	Environmental Monitoring & Management							_	r -	_			гт			- r				-		
3	Feedstock Collection & Preparation															-						
4	Exploratory Testing Test Plan Revision								H	-							T					
5 6	Detailed Parametric Testing									-		-	1				-		-			
0	Optimization & Validation												Н							_		
8	Provide Split Samples												L									1
9	Secondary Feedstock Testing													-								ł
9 10	Plant Relocation & Recommissioning													-	-							J
10	Modeling & Simulation																					
12	Sample Analysis																-				-	_
13	Technical & Economic Analysis												r		Т							
14	Commercialization Analysis													Т								
15	Decommissioning & Disposition																					
16	Phase 2 Summary Report																					_
10				1		1 1											1					



Specific Tasks

- 1. Project Management & Planning
- 2. Site Host Agreements
- 3. Detailed Systems Engineering
- 4. Environmental Controls Assessment
- 5. Site Rehabilitation
- 6. Bidding & Procurement
- 7. Fabrication & Construction
- 8. Installation & Assembly
- 9. Systems Safety Analysis & Training
- 10. Startup & Shakedown
- 11. Project Management & Planning
- 12. Environmental Monitoring & Management

- 13. Feedstock Collection & Preparation
- 14. Exploratory Testing
- 15. Test Plan Revision
- 16. Detailed Parametric Testing
- 17. Optimization & Validation
- 18. Provide Sample Splits
- 19. Secondary Feedstock Testing
- 20. Plant Relocation & Recommissioning
- 21. Modeling & Simulation
- 22. Sample Analysis
- 23. Technical & Economic Analyses
- 24. Commercialization Analysis
- 25. Decommissioning & Disposition
- 26. Phase 2 Summary Report

Generalized flow diagram for the rare earth element production system

So What Does This Mean?

- 1. Product Purity
- 2. Economics and Capital
 - a) Cap Ex
 - b) Op Ex
- 3. Performance Determination
 - a) Operational Knowledge
 - b) Throughput
 - c) Predict Performance (Model and Data)

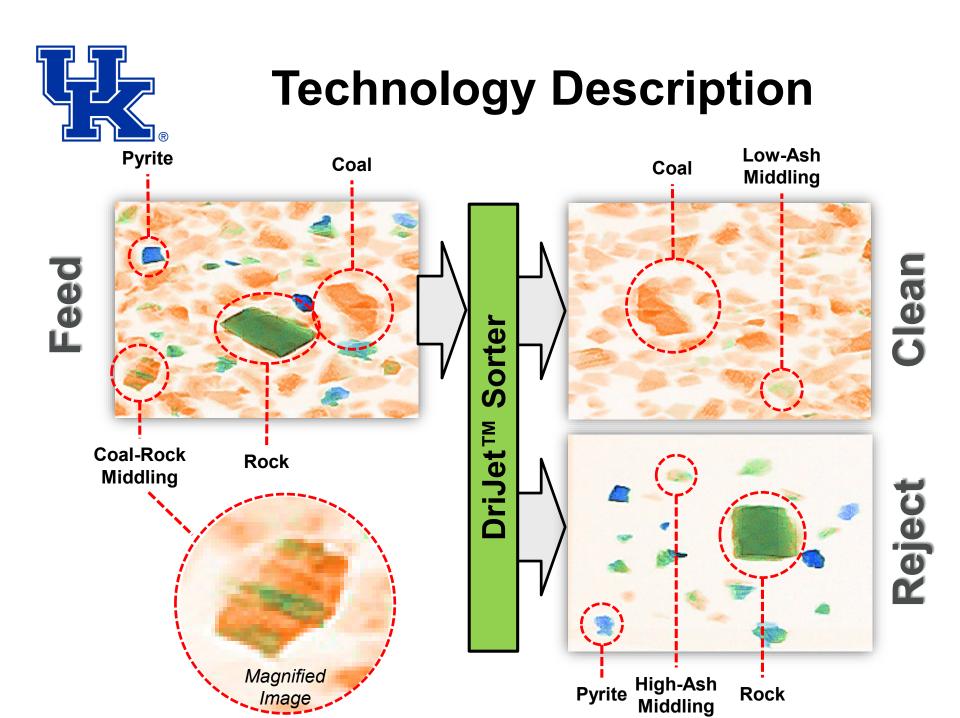
Challenges and Opportunities

- Inventing the Process
- Scaling the Process
- Equipment Design and Sourcing
- Work Force
 - Experience (Students)
 - Sourcing (3-20 Personnel 9 months)
- Logistics
- Conflicting Priorities
 - (Teach, Research, Serve)

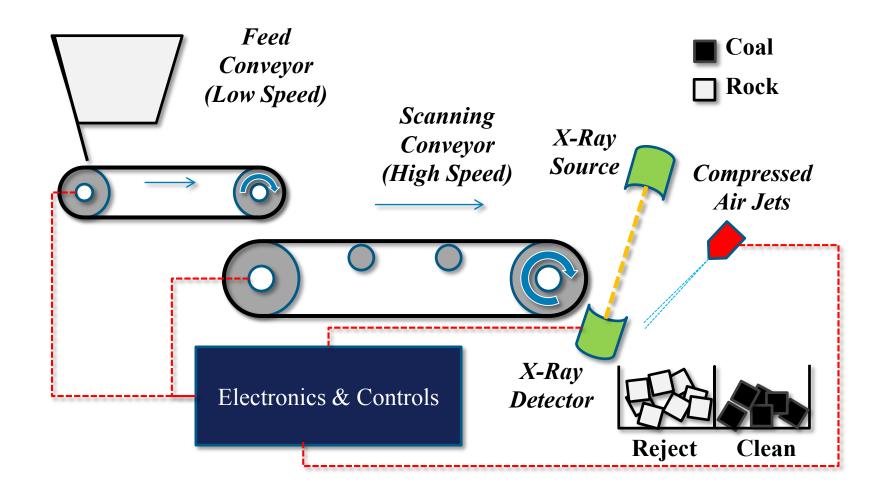
Systems and Philosophies

- Six Sigma
 - Control Plans, FMEAs
- Evernote
 - See, Learn, Together
- Correlation Meetings
- Assignments and Ownership
 - Clear Objectives
 - Trust and Responsibility (Its on You!)
 - Safe to Make Mistakes
 - Return and Report

1													
		1											
Control Plan	n Number:		Control P	Plan Owner / Phone:	2			Date Original:			Date Revised:	1	1
001-Leach P	Process Control Desig	ign	Douglas /	(859)684-1690				05/10/2017			NA	I	
Process:			Team:					Revision Note					l
REE 1/4 hr Pi	Pilot Plant		Douglas /	Ado, Josh Werner, B	3ob Braton, Jacob	ه Gill		_				1	
Description:	6		Approval	(Date:								1	
Operation c	of Leach Circuit												4
	·'				''	'	+	I	I	'		·	
Process	Process Name/	Tank, Device,	, —	Characteristics	<u>,s </u>	'	L	Method	1		I	1	1
Number	Description	Equipment	No.	Inputs	Output	СТQ	Product/Process	Evaluation/	H	ample	Control Method	Reaction Plan	Notes
	·′	<u> </u>	· · · · ·	·	·'	 '	Specification/Tolerance	Measurement	Size	Freq.		·'	
1	Leaching	TK-10	10a	Filter Cake Solid Mass	1	N	70-75 %	VT?	2	?	?	1 ?	1
	1 ,		10b	Filter Cake Liquid	1,	N	25-30 %	VT?	2		2	1 2	
↓	·'	1	TOD	Mass Filter Cake Liquid	t'		23-30 %	VII		r		· · · · · ·	1
	1	1	10c	pH	1 '	Y	?	VT?	?	?	?	?	1
	1,		10d	Filter Cake Feed Rate	1	Y*	~100lb hr	VT?	?	?	?	1 ?	VT adding a slurrying tank
+	, ,			Inlet Flow Rate (P-	· · · · · · · · · · · · · · · · · · ·	V	4 - 8 (Target 6 LPM)	RPM	N/A	Continuous	Set Point / PLC	Operator Adjust	
↓	′	+	10e	13) Inlet Flow	t'	+ <u>'</u> '		+					+
	Ĺ′		10f	Temperature	<u> </u>	Y	None	N/A	N/A	N/A	N/A	N/A	1
	()		10g		Leaching Temperature	Y	75 °C	Thermocouple	N/A	Continuous	Set Point / PLC	Operator Adjust	
	í'		10i	·	Residence Time	Y	See Sys-a	See Sys-a	See Sys-a	See Sys-a	See Sys-a	See Sys-a	l
	, ,		10j	ļ ļ	pН	Y	TBD	pH Probe	N/A	N/A	See Set Point in TK- 6	SOP	
	,		10k		% Solids	Y*	1-20%	Weight of Known Volume	N/A	Hourly	P-13 Flow Rate	SOP	



									FMI	EA											
FMEA Nun					FMEA Pla	n Owner / Phone:						Date Original:				Date Revised:					
002-Hydro	met Circui	t Startup S	Safety Eva	luation		ner (509)995-6697						6/14/2018				7/31/18					
Process:					Team:											/31/18 to assign respons					
Plant						ker, Josh Werner						-				rators will observe & an	1				res
Descriptio					Approval							with the goal of	r cor	itinu	ously working towar	ds the safest work envir	onments and mitigati	ng ha	azard	s.	ſ
Operation	OT PIIOT PI	ant			RICK HONA	ker 6/15/2017															
	Process	Tank,		Characteristics						8	Current	Current						+	ø	<u> </u>	<u> </u>
Process Number	Name/	Device, Equipme nt	No.	Inputs	Output	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Potential Cause of Failures	Occurrenc	Process Controls Prevention	Process Controls Detection	Detection	R.P.N.	Recommended actions	Responsibility & Target Date	Actions Taken & Completion Date	Severity	Occurrence	Detection	R.P. N.
1	Leaching	Leach Tank	1a			Leaking Acid	Acid Burn	7	Loose Fittings	7	Water Test	Visual	5	245	Water Shake Down	Joshua Werner 6/19/2018	Water Test 6/19/18	7	1	5	35
			1b			Leaking Acid	Acid Burn	7	Leaking Pipes	3	No Acids Pumped Overhead	Design	5	105	Check Off Walk Through	Jacob Gill 8/1/18					
			1c			Leaking Acid	Acid Burn	7	Acid Exposure	3	Shower/Eye wash	Design	3	63	Test Shower Montly, Test Log	Kin Craig 8/3/18					
			1d			Leaking Acid	Acid Burn	7	Peristaltic Pump Wear	7	Pre and Post Shift Start Inspection Logs	SOPs	7	343	Maintenance and Replacement Schedule	Jacob Gill 8/6/18					[
			1e			Contact Acid	Acid Burn	7	Inspecting Tank	7	Design	Operator	5	245	SOP and Procedure for Checking Tank	Alind Chandra 8/20/18					
			1f			Fire	Badness	10	Electric Heater	3	Low Solution Sensor	Shut Off	10		Test Shutoff each tank and record	Jacob Gill 6/15/18	Sensors Installed 6/19/18			L	0
			1g			Fire	Badness	10	Electric Induced	1	Fire Alarms	Auditory	5	50	Test Bi annually	Rick Honaker 1/1/19				<u> </u>	
			1h			Fire	Badness	10	Electric Induced	1	Fire Extinguishers	Location	3	30	Inspect Bi annually	Rick Honaker 1/1/19				L	
			1i			Fire	Badness	10	Electric Induced	1	Fire Department Training	Fire Department Training	5	50	Host a Fire Department Field Trip	Joshua Werner 8/8/18					
			1j			Fall	Injury	10	Reaching, Awkward Position	5	Mobile Platform Ladder	Visualy see if operator is utilizing	3	150	JHA Observation and Improvement	*Weekly JHA					
			1k			Acid Fumes	Respiratory Distress	5	Poor Ventilation	5	Ventilation Design	Operator	7	175	Vent Survey	Blanton P/Jacob G 8/6/18					
			11			Overheating	Melting Tank	10	Strong Acid Addition	7	Design	None (Will be added after water test)	10	700	JHA Observation and Improvement on Startup, Thermocouple and display	Doug Addo 8/10/18					
			1m			Leach Tank Tip Over	Acid Burns	10	Earth Quake	1	Stands and Bolt to the Floor	3	10	100		Jacob Gill 6/18/18	Stands Bolted 6/18/18	10	1	10	100
			1n			Leach Tank Tip Over	Acid Burns	10	Fork Lift Strike	3	Operator	10	10	300	Need A-Safe Barriers Installed on Acid Startup	Blanton Park 6/7/18					
			10			Tank Failure	Acid Burns	10	See1I,1n	3	Sump	Sump Pumps	3	90	Sump Pump Tests	Jacob Gill 6/6/18					
			1р			Tank Overflow	Acid Burn	10	Plugging outlet Line	3	Outlet Diameter	Visual	7	210	Water Only Solids Test	Rick Honaker 8/27/18					
			1q			Tank Overflow	Acid Burn	10	GFCI trips some pumps but not all	10	Wiring Design	Visual	7	700	Ensure Pumps on One Circuit/Add Level alarms	Doug Addo 8/17/18					ſ



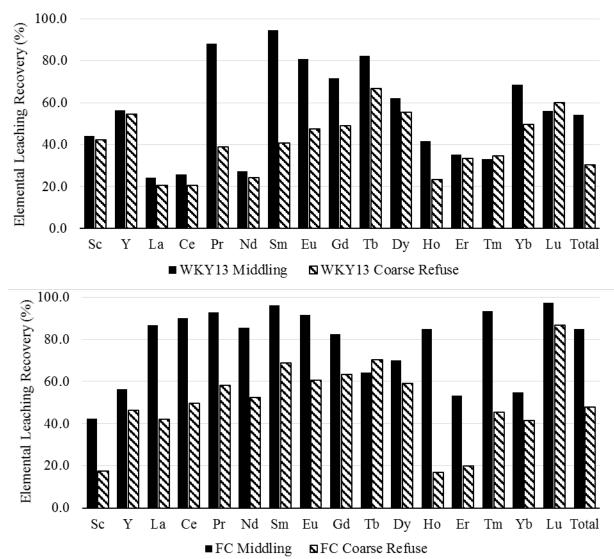
At a Location in Kentucky...

Technology Description

REE Pre-concentration – Dual X-Ray Sorter

Sorter Technology

Pilot Plant Layout



Mineral Processing

Leachability Characteristics

- 1.2 M H₂SO₄
- 1% solids
- 75°C
- 2 hour
 leaching
 time

Leaching Circuit

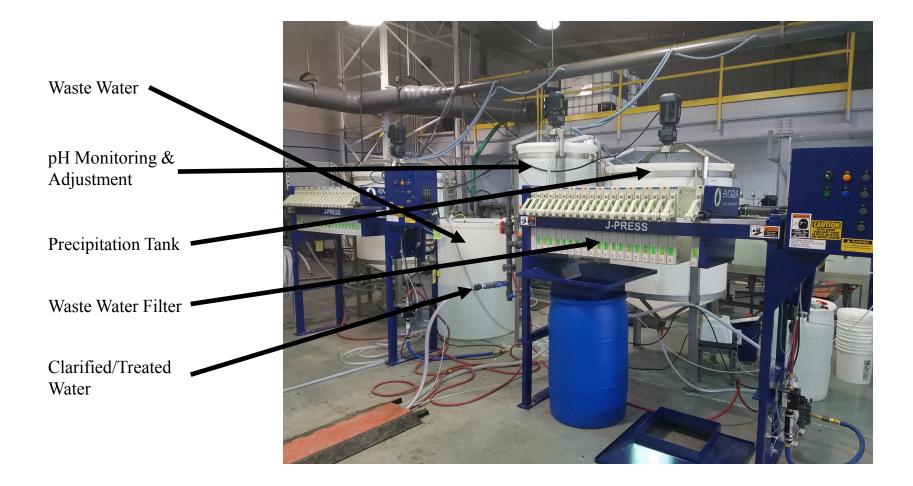
Solvent Extraction

- Solvent extraction is performed using an organic extractant that is dissolved in an organic phase
- The organic phase is allowed to contact with an aqueous phase containing the dissolved metal species
- Phase separation is achieved in a settler section of the SX unit.

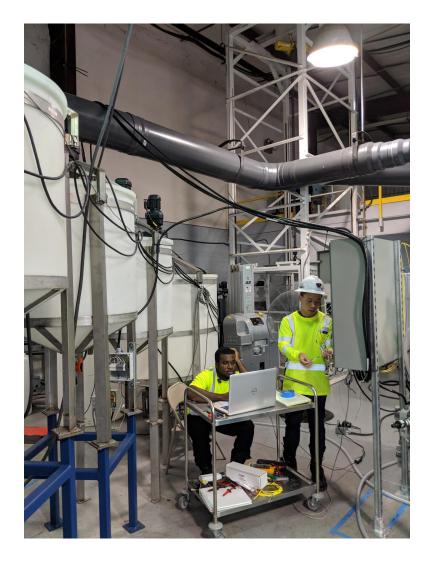
Solvent Extraction/Precipitation Pilot Plant

Solvent Extraction Products

		REE Oxid	e (ppm)	
Rare Earth Element	Fire C	Clay	W. KY N	No. 13
Licincin	Middlings	TUF	Middlings	TUF
Scandium	14	0	0	0
Yttrium	8,157	22,050	34,438	22,579
Lanthanum	82,149	28	757	128
Cerium	250,277	527	7,586	1,694
Praseodymium	24,421	150	1,142	465
Neodymium	98,745	545	6,021	3,441
Samarium	22,372	375	4,160	3,277
Europium	1,584	98	1,380	1,083
Gadolinium	13,921	950	9,152	8,280
Terbium	<dl< td=""><td>360</td><td>1,519</td><td>1,413</td></dl<>	360	1,519	1,413
Dysprosium	6,472	4,475	11,883	11,295
Holmium	1,199	727	1,388	1,268
Erbium	700	2,392	3,149	2,306
Thulium	1,282	442	603	269
Ytterbium	<dl< td=""><td>1,228</td><td>1,558</td><td>329</td></dl<>	1,228	1,558	329
Lutetium	391	123	171	23
Total	511,685	34,470	85,357	57,850


Cleaning Circuit

Water Treatment



Control and Containment

Conclusions

- 1/4-tph REE pilot plant will be operating in September 2018 and tested through February 2020.
- Project currently in startup phase
- Project deliverables include determining process performance and economics
- Other valuable elements including Cu, Ni, Co, and Zn were also recovered in the REE preconcentrates
- Final REE products containing 98% of rare earth oxides were generated by oxalic acid precipitation.

Thank You

Questions?

see blue.