

Why Your Quarry Matters Morgan Iane, PE, MBA

Introduction

> At a cement operation, the plant is KING!

• Quarries provide approximately 90% of the raw materials, but only account for 10% of the total costs

> It is often seen that Quarry Managers have little to no experience with how a mine should operate.

What we will cover

- > What is a block model
- > What information can you get out of a block model
- > What is a mine plan
- > What Information can you get out of a mine plan

> Real life examples of how a block model and mine plan helped an operation

What is a Bock Model

Model Estimation

Block Classification	Confidence Level	Description
Unpopulated	None	Blocks that were unable to be estimated using estimation procedures
Measured	High	Can be converted to "Proven" material with mining considerations
Indicated	Medium	Can be converted to "Probable" material with mining considerations
Inferred	Low	Can be converted to "Potential" material with mining considerations

Exploration Drilling

> The most critical element to understanding your quarry

• Drilling in a grid is ideal but not necessary for development of a block model

Exploration Drilling Cont.

Drill Hole Penetration Chart

> Drilling needs to be deep enough to fully penetrate the pit floor

Faulting

> Exploration drilling can identify any fault systems within your quarry

> It is not uncommon to see material appear on one side of a fault but disappear entirely on the other side of the fault.

Faulting Cont.

> Quarries can be complex with many different fault blocks.

Each fault block is modeled independently

Fault Zone	Strike	Dip*
1	80	30
2	80	50
3	60	30
4	60	40
5	65	50
6	80	30
7	80	60

*Down-dip direction shown by black arrow

Geologic Bedding

- > Is a deposit "massive" or geologically bedded
- > If bedded, is there a strike and dip direction?

What Information can you get out of a Bock Model?

Resources and Reserves

Limestone						
Classification	Tonnes (Mt)	Al ₂ O ₃ (%)	CaO (%)	Fe ₂ O ₃ (%)	MgO (%)	SiO ₂ (%)
Measured	146.09	0.25	52.34	0.40	1.95	1.70
Indicated	3.19	0.66	50.38	0.48	1.99	4.07
Grand Total	149.28	0.26	52.30	0.41	1.95	1.75

Limestone						
Bench	Tonnes (Mt)	Al ₂ O ₃ (%)	CaO (%)	Fe ₂ O ₃ (%)	MgO (%)	SiO ₂ (%)
1	9.22	0.26	51.81	0.56	2.25	1.97
2	25.91	0.23	52.11	0.42	2.13	1.40
3	44.91	0.28	52.32	0.40	1.93	1.70
4	35.59	0.27	52.44	0.38	1.87	1.80
5	33.65	0.26	52.41	0.38	1.84	1.96
Grand Total	149.28	0.26	52.30	0.41	1.95	1.75

Cross Sections

- > Aslice across the block model
- > Can identify trends or hotspots within the quarry

Chemistry Grade Maps

- Concentrations for a specific chemistry
- Can identify hotspots within the quarry

Sensitivity Analysis

- Can determine the sensitivity of the quarry's life for various chemical cutoff parameters
- Shows the potential impact of high grading your quarry

Cumulative MgO Cutoff (%)	Incremental Mtonnes	Cumulative Mtonnes	Mtonnes above Average Grade	Quarry Life (1.9Mt/yr rate)
1.50	67.61	67.61	11.78	35.6 yrs
1.75	8.20	75.81	3.58	39.9 yrs
2.00	3.48	79.29	0.10	41.7 yrs

Future Exploration Drilling

> Ablock model can identify areas that are of low confidence where additional drilling may be needed.

What is a Mine Plan?

What is a Mine Plan

> It can be many different things:

- / Asequential design
- / Aguidance for the total available material
- / Avaluation of property
 - » Lawsuits
 - » Investments

> Understanding the clients needs and providing them is the<u>MOS</u>Tmportant thing in a mine plan

> Must consider the Mining Method

Mining Methods

> Surface

- / Open Pit Truck and Shovel
- / Contour Mining
- / Dragline Strip Mining
- / Others
- > Underground
 - / Cut &Fill
 - / Long-Hole Stoping
 - / Vertical Crater and Retreat
 - / Room and Pillar
 - / Longwall
 - / Others

Mine Planning

> Relates to mining of the deposit, but includes other disciplines and work

- / Geologists / Resource Estimation Specialists
- / Hydrological and Geotechnical Engineers
- / Environmental Scientists and Engineers
- / Financial Analysis, Taxes, and Permitting

> Usually includes

- / Ultimate mining limits
- / Access roads and ramps
- / Quantity and quality of the deposit
- / Mining / development of waste material
- / Life-of-mine schedule
- / OpEx and CapEx costs
- / Cash-flow analysis (required for the statement of reserves)

What Information can you get out of a Mine Plan?

End of Year 2022

Annual Progression Maps

- > Shows where and how much of each bench will be mined
- Helpful in planning a transition into a new phase of quarry development

Annual Progression Maps Cont.

> Shows the development of the operation over a given period of time

= Mining Direction

End of Year 2022

By Bench Annual Progression

Real Life Examples of Howa Block Model and Mine Plan Helped an operation

Identified Additional Reserve Areas and Faulting

"Unblendable" Material Left in the Quarry

Quantified Unusable Material

> 8.09 Mtonnes of Chert material represents approximately 3.67 years of mine life.

Avoided Hard to Handle Material Historically

A448A/23	A450/12	
A448A/24	A450/14	A457A/57A/A
A448A/25	A450/15	1457A/5
A448A/26 A448A/27	1100/13	A457A/2
A448A/28	A450/16	A4570
A448A/29	A450/17	Aqs
A448A/30	A450/18	A4570
A448A/31	A450/19	A4520
A448A/32	A450/20 A450/20	A457A/11
A448A/33	A450/21 A450/22	A457A/12
A448A/34	A450/23	A457A/15 A453
A449A/2E	A450/24	A457A/1
A440A/35	A450/25	A457A
A448A/36	A450/26	A457A/17
A448A/37	A450/27	A457A
A448A/38	A450/28	A/19 A45
A448A/39	A450/29	A4520
A448A/40	A450/30	A457A/21
A448A/41	A450/31	A457A 12
A448A/42		A12
A448A/43	A450/32	157A/24
A448A/44		A457A/20
A448A/45	PART STORAGE STATION	
1.13 Sec.	VRISE PAR IND AN	Agr. 4/27
A448A/46	AL ANTON	·S/A/28
	TS-C-09	A457A/20
A448A/47	A REAL TRACK	A457A
A448A/48		
A448A/49 A448A/50	the state of the second	137A/31
A448A/51		AASTAI
A448A/52		132
		A457A/32
A446A/33		A457A
Owned		A457A/34
Unowned - High Priority		
Unowned - Low Priority	4 A45 455 155	11/3
Leased E B S & S S	002 A 8 95 95	A46
2019 Mining Limit	S S S S S S S S S S S S S S S S S S S	TS-C-02 8 8
	e45	191
N 0 100 200	A45	A461/

morgan.lane@respec.com 859-259-0959