Hghwall Stabilization and Ground Control – Portal Design

Carolyn McCannon, PE Mining Engineer

Carolyn.McCannon@respec.com

> Highwall Hazards

- > Location planning for Final highwall AND Portals
- > Data collection and analysis for Design
- > Highwall stabilization solutions
- > Portal Reinforcement

3

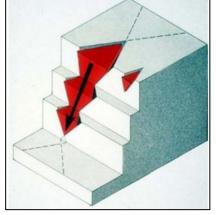
Hghwall Hazards

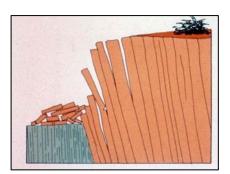
> Joint sets

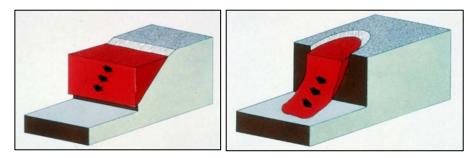
 Discontinuity intersections can control pillar strength and highwall wedge instability; potential for toppling failure

> Bedding planes

/ Planar failure, roof control issues


- > Unconsolidated Material
 - / Circular failure of waste or overburden


> Mud or Clay seams


/ Weak bands impact face and pillars

> Water / Ice

/ Increased weight to face; freeze-thaw impacts to portals and final highwall; falling ice chunks

Final Hghwall and Portal Location planning

 > 111 active underground stone mines(2023, MSHA)

Layouts are highly variable

 / Fit to site topography, infrastructure, and geology

> Access

/ Adit, Decline, Shaft-only

Final Hghwall and Portal Location planning

> mining interval defined by chemistry or strata?

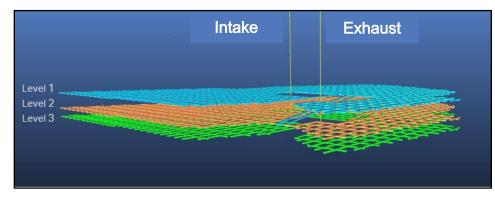
- / Multi-level mining; heading only; benching
- > What does the geology allow?
 - / Roof and floor selection to minimize ground control costs
 - / Pillar sizing and orientation
 - / Bench Face Angle

> Equipment to be used?

- / Maneuvering room and reach
- / Ease of access and maintenance

> Is the Underground mine viable/profitable?

- / Life of the mine, any post-mine use
- / Expected production rate


Final Hghwall ANDPortal Location planning

- / Easy to inspect and maintain
- / Easy to work from to install support
- Avoid higher cost stabilization measures (rockfall fences, face grouting and bolting, additional layback)

> Save on operating costs

- Ventilation simulation to determine appropriate sizing of shafts and entries
- / Water management design

Data Collection and Analysis for Design

RESPEC

> Data collection

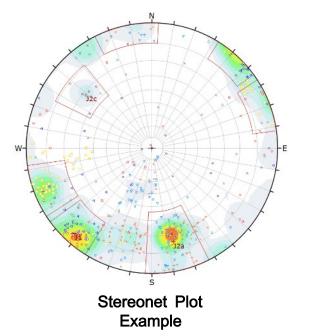
- / Existing mine infrastructure (utilities, material transport)
- / Geology: corehole drilling to characterize the rock mass
 - $\label{eq:constraint} \textbf{``Lithology, Rock strength testing, Geotechnical logging, Chemistry/attribute analysis}$
- / Topography
 - » Drone point clouds can be used for joint mapping, 3D modeling
- / Equipment fleet and Production targets
- / Site-specific needs
 - » Water, Neighbors, Permit limits, State and MSHAregulations

> This information is also used for Underground mine layout and pillar sizin

Data Collection and Analysis – Point Cloud Joint Mapping

9

Data Collection and Analysis for Design


> Experience

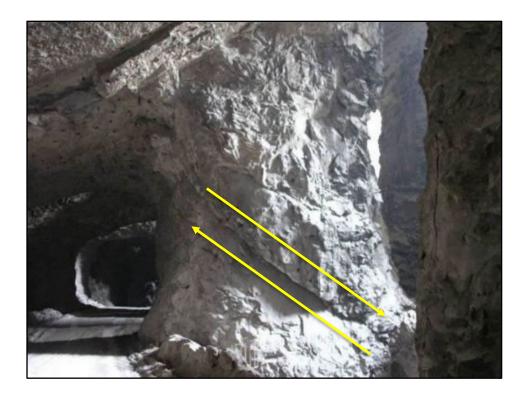
/ Rules of thumb can be overly conservative / misleading

> Geologic investigation and 3d Modeling

> Rock mass classification

- / Itasca models
 - » FLAC-2Dand 3D geotechnical analysis
 - » 3DEC-2D and 3D jointed rock masses
- / Rocscience Models
 - » RS2-2D geotechnical analysis
 - » SWedge and UnWedge ground support design of wedge structure
 - » DIPS-slope orientation analysis
 - » Slope stability and bench design for open pits

Underground Layout / Pillar Design



> rock properties

- Discontinuities dipping between 30 and 70 deg have the greatest impact on strength
- / Joint mapping more than just one wall prevents data bias

> Benching

 More vertical height, more risk of continuous discontinuities being exposed

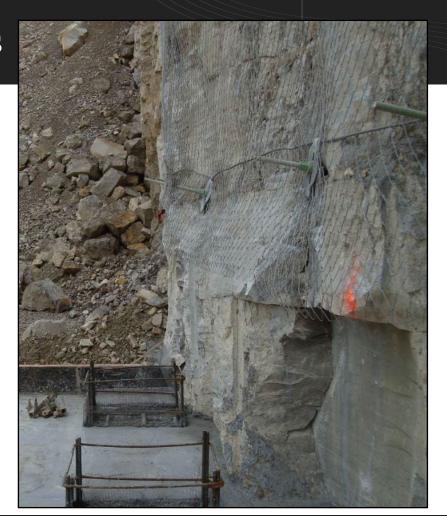
Hghwall Stabilization Solutions

> ROCKFALL PROTECTION BARRIERS

- / Protection from falling rock or debris
- / When space is limited and a runout zone for falling rocks is not feasible

Hghwall stabilization solutions

> Wire mesh drape


- / Chain link difficult to work with and limited strength
- / Wire mesh rolls with no vertical stretch
 (Geobrugg, Maccaferri, etc.)
 - » Efficient installation
 - » Conforms to highwall shape
 - » Corrosion protection (galvanized)
 - » Can be shotcreted over

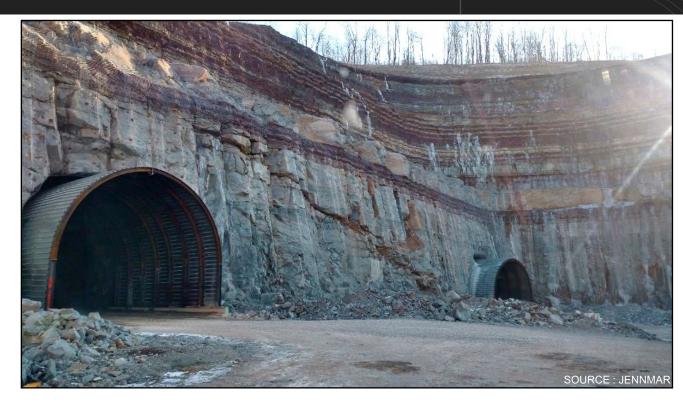
Hghwall stabilization solutions

> Wire mesh drape

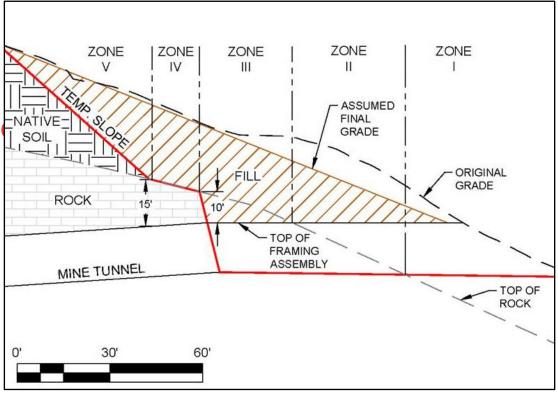
- / Chain link difficult to work with and limited strength
- Wire mesh rolls with no vertical stretch
 (Geobrugg, Maccaferri, etc.)
 - » Efficient installation
 - » Conforms to highwall shape
 - » Corrosion protection (galvanized)
 - » Can be shotcreted over

b

- / Generally, portals require more reinforcement than the rest of the underground mine
- High risk of instability (>80%)
 if first roof beam less than 10% of span
- Welded wire mesh panels and bolting
 - » Galvanized corrosion protection
- / Shotcrete
- / Browand rib straps/support
- / Portal canopies


- / Generally, portals require more reinforcement than the rest of the underground mine
- High risk of instability (>80%)
 if first roof beam less than 10% of span
- / Welded wire mesh panels and bolting
 - » Galvanized corrosion protection
- / Shotcrete
- / Browand rib straps/support
- / Portal canopies

> Portal Canopies

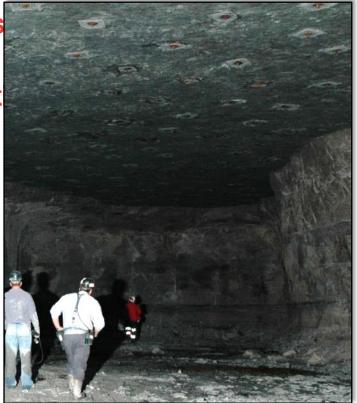

- Installed at mine openings after initial development
- Impact resistance for falling ice or rock

> Soil load calculations

- > Conceptual model
- > Databacked analysis to justify appropriate groun

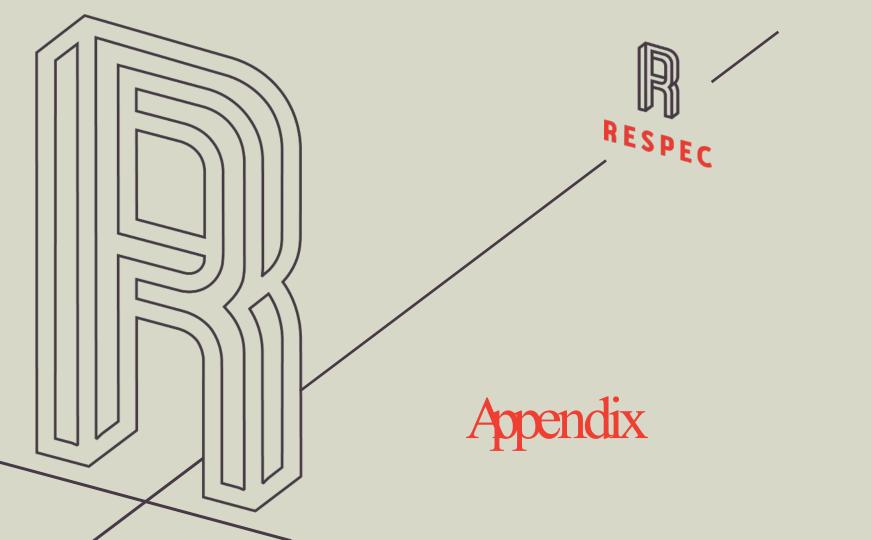
> Weak ground: more stabilization needed to pr collapse or convergence

> Geotech and civil / tunneling examples more



In Conclusion

> Planning and involving multiple disciplines


- / Engineers, Operators, Geologists
- Data Collection and analysis useful to just ground control needs
 - / Problem areas can be identified in advance
 - / Planning leads to Capital & Operating cost savings
- Support methodology must be compatible geologic conditions
 - / Monitor and verify support
- > Numerous support options are available
 - / Not all are cost effective

Carolyn.McCannon @respec.com

R Respec

Underground Layout / Pillar Design

S-Pillar - Untitled Document

Warning Messages

> SPillar Softwa(BIOSH)

/ Roof beam and horizontal stress issues

> Understand rock properties:

- / Rock strength
- / Discontinuities

Suggested Design Crit

- / Width / Height ratio > 0.8
- / Calculated Factor of Safety >1.8

File Units Help Chart Summary Dimensions Geotechnical Results Development Benched -UCS 3.65 Factor of Safety 6.02 Uniaxial compressive ÷ 19000 strength (psi) W·H 2 00 0.86 Select from table (if unknown) Extraction % 75 8.0 0 7.0 Safety Large Discontinuities 6.0 Check here if large discontinuities are present of actor 12.6 - -4.0 63 шĭ 3.0 120 Frequency per pillar -2.0 0.0 0.0 0.5 1.5 2.0 2.5 Width-to-Height Ratio Development pillar 60 Recommended design area O Benched pillar Scale: 100 ft Stable pillar layout Back to dimensions input Failed pillar Show case histories

^

v

Underground Layout / Pillar Design

- > SPillar Softwa(BIOSH)
- > Identified Main stability issues:
 - / Stability of bedded roof beams
 - / High horizontal stress

> Limitations

- / Flat lying stone deposits in Eastern and Midwest US
- / Similar mining dimensions
- / Good quality rock mass (RMR>60)
- / Weak clay bands should not be present

